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ABSTRACT 

 

Natural gas is a key energy source for residential, commercial, electric power and 

industrial use. Residential, commercial and electric power sector consumption is primarily driven 

by weather conditions and displays obvious seasonal patterns while production is relatively 

stable throughout the year. As weather condition is uncertain and both consumption and 

production are inelastic in the short term, natural gas price is quite volatile especially in the 

heating season. Due to an imbalance between production and consumption, storage plays an 

important role in ensuring availability and smoothing price between low and peak consumption 

seasons. Storage is also a key driver of price volatility. The existing literature confirms the 

importance of inventory and weather conditions in determining price and its variance. Most 

studies to date use time series models and focus on the historical price realizations while 

providing little insight into  how price patterns are determined by market participants’ behavior. 

In addition, the impact of inventory and weather variables on price volatility has not been 

analyzed in detail.  

This thesis aims to construct a model that can mimic the major market participants’ 

behavior and reproduce the natural gas price with mean and standard deviation patterns 

consistent with historical observations: higher average level and standard deviation in peak 

consumption season. We construct a monthly rational-expectations competitive storage model to 

better reflect monthly variations in price. Natural gas consumption and production are specified 

in a way that the current period volume is highly correlated with previous period volume so as to 

capture the stickiness and gradual change in natural gas markets. Imposing non-arbitrage 

condition, price is inter-temporally correlated. Net storage cost consists of both physical storage 
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cost and convenience yield obtained from holding stock at hand. Normal storage level for each 

month is introduced to reflect the yearly cycling of natural gas inventory and is used in the 

convenience yield calibration. It denotes the normal storage level each month that is needed to 

balance seasonal demand-supply relationship. Convenience yield is high if the inventory falls 

below normal storage level and high convenience yield pushes up the price and decreases current 

consumption to accumulate more natural gas for future use.  

The model is solved using numerical methods because analytical solutions are not 

feasible. In order to validate the result, accuracy tests are conducted and the major assumptions 

are tested as well. The model’s approximation errors are reasonable. The model is further 

validated by comparing simulated price series with historical observations by using historical 

weather variables in the solved model. The simulated model generates prices that largely 

replicate the key features of historical data, including the price level, price variance, price 

sensitivity under unusual weather conditions and price autocorrelation.  

Weather conditions and total natural gas availability are the main drivers for price and 

price standard deviation. The model finds that in winter high heating degree days (HDD) or low 

inventory drives price and price volatility higher while price and its variance decrease with low 

HDD and high inventory. The case is similar in summer with cooling degree days (CDD) instead 

of HDD as the weather variable. When inventory is low, weather shocks have a larger impact on 

price than when inventory is high. The effect is more pronounced in winter than in summer 

because the supply is tighter in heating season.  

Using the validated competitive storage model, this thesis further assesses the potential 

impact of LNG export on the U.S. domestic natural gas market. Given the large pricing spread 

between the United States and the rest of world, along with policy promotion and the completion 
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of LNG facilities, U.S. LNG exports are poised to expand dramatically.  This study covers two 

major types of LNG export scenarios: exogenous fixed volume and endogenous export volume 

depending on the price spread between US and world prices. Four export scenarios are analyzed 

and compared with the benchmark scenario of no LNG export. The first two scenarios are fixed 

export volume with 6 bcf/day and 12 bcf/day respectively, to be consistent and comparable with 

an EIA 2014 report and the existing literature. One of the endogenous scenario scenarios 

assumes no consumption and supply growth for importing countries and the other one assume 

100% increase of demand and 50% increase of supply in LNG importing countries by 2036. 

Because of high shipping cost and inelastic natural gas demand in importing countries, 

the U.S. LNG is not competitive under current market condition, if no growth is expected. The 

U.S. LNG export volume is very small and decreases over time. Due to small export volumes, 

the domestic price impact is minimal. For all scenarios analyzed in this study, the long-term 

price impact is less than 8%, or around $0.33 per thousand cubic feet. In the long-term, the 

endogenous export with growth assumption scenario shows the largest price increase compared 

to the no export benchmark scenario. The export level is around 12 bcf per day.  

The U.S. domestic price variance becomes smaller if an endogenous export sector is 

added while the price variance becomes higher under fixed export volume scenarios. If the LNG 

export is endogenously determined, when domestic price increased, LNG export decreases. This 

provides an additional buffer to the U.S. domestic market if there is shock to push up natural gas 

consumption and price. In contrast, fixed volume export makes the total natural gas consumption 

less responsive to price change and thus increases price variance.  

Most of the LNG export volumes will be satisfied by production increases instead of 

domestic consumption reductions in the long term. In all four scenarios analyzed in this study, 
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production catches up gradually in response to price increase due to LNG export. In the 

beginning period when production is constrained by production capacity, most of the export is 

covered by domestic consumption reduction. In the long term, as production increase, domestic 

consumption recovers to similar level as in the no export scenario. 
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CHAPTER 1. INTRODUCTION 

 

Natural gas is an important energy source for the residential, commercial, electric power 

and industrial sectors of the U.S. economy. The natural gas market has garnered a lot of attention 

recently due to its growing importance as an energy source and the many significant changes the 

market has gone through in the past decade. With the technology advance in hydraulic fracturing 

and horizontal drilling, domestic production of natural gas has increased dramatically since 2005. 

Industrial and electrical power sector natural gas usage increased in response to significant price 

decreases. Natural gas price is one of the most volatile among energies due to inelastic supply 

and highly weather-driven consumption in the short period. The aim of this research is to better 

understand the dynamics of the natural gas market and associated price behavior.  

1.1 Natural Gas Market Fundamentals 

Weather has substantial impact on natural gas storage and prices. On the consumption 

side, residential and commercial uses of natural gas are directly affected by temperature. When 

temperature is high, cooling consumption is large while low temperatures increase heating needs 

of residential and commercial users. Natural gas is also an important feedstock for electricity 

generation and is replacing the leading role of coal because of low gas prices and environmental 

issues involved with coal. Electricity consumption has strong seasonality and closely related to 

weather conditions. On the supply side, within a short period, natural gas supply is usually quite 

stable. But over time supply has changed dramatically. Since 2005, with the shale gas revolution, 

U.S. natural gas supply has increased by about 50%, from 19 trillion cubic feet (tcf) in 2005 to 

28 tcf in 2016. This supply is affected by random shocks like extreme weather. For example, 

Hurricane Katrina in 2005 August and Hurricane Rita in 2009 greatly decreased the short-term 
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natural gas supply as some of the Gulf Coast natural gas infrastructure was destroyed. Storage is 

important in balancing supply and consumption and smoothing natural gas prices fluctuations 

across different periods. In winter, natural gas consumption is high and storage is used to satisfy 

seasonal peak demands. In summer, spring and fall, natural gas is stored for winter use. Storage 

accounts for about 40% of winter month natural gas supply.  

According to U.S. Energy Information Administration (EIA), natural gas delivered to 

consumers can be categorized as commercial consumption, residential consumption, electric 

power consumption, industrial consumption and vehicle fuel consumption. A small proportion of 

the marketed natural gas is used for plant processing and distribution. We focus on natural gas 

end-use in this study.  

The residential sector is large and exhibits quite variable consumption patterns. All 

private dwellings’ usage of natural gas is categorized as residential consumption, including 

house or apartment heating, cooling, cooking, and all other household uses. The residential 

sector accounted for 17.4% of the total use in 2016. Residential natural gas consumption has an 

obvious seasonal pattern. In winter, heating consumption drives natural gas consumption high. 

Commercial natural gas consumption is defined as the “gas used by nonmanufacturing 

establishments or agencies primarily engaged in the sale of goods or services. Included are such 

establishments as hotels, restaurants, wholesale and retail stores and other service enterprises; 

gas used by local, State, and Federal agencies engaged in nonmanufacturing activities” (EIA, 

2016). Vehicle fuel natural gas consumption is included in commercial gas consumption through 

1996 by EIA. Vehicle fuel natural gas consumption accounted for 1.2% of the total commercial 

consumption and 0.2% of total gas consumption in 2016. To better use the data and because 

vehicle fuel only accounts for a very small proportion, this study treats vehicle fuel natural gas 
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consumption as part of commercial consumption. Gas consumption in commercial sector follows 

the same pattern as residential sector and is mainly driven by weather factors. In winter, heating 

consumption in the commercial sector drives up the commercial natural gas consumption. In 

2016, commercial sector consumed 12.6% of the total natural gas delivered to consumers.  

Electric power sector is the largest sector, accounting for 39.5% of the total natural gas 

consumption in 2016. Gas consumed in this sector is categorized in two types: electricity-only 

plants and combined heat and power plants. For combined heat and power plants, if they are 

identified as primarily for residential or commercial use, natural gas use will be categorized as 

residential or commercial use instead (EIA, 2016). When the price of natural gas was high 

relative to coal, natural gas was used as a peak load feedstock for electric power. Since the 

significant price reduction due to the shale gas boom, some efficient gas-burning combined cycle 

plants are used as base load generation (EIA, 2012). We can see a clear upward trend in natural 

gas consumption in the power sector in the recent decade. Natural gas consumption in the power 

sector is weather responsive and has two consumption peaks: one big peak in summer due to 

high cooling consumption and one small peak in winter as a result of heating consumption.  

Industrial consumption of natural gas is defined as “natural gas used for heat, power, or 

chemical feedstock by manufacturing establishments or those engaged in mining or other mineral 

extraction as well as consumers in agriculture, forestry, and fisheries”. Also included in 

industrial consumption are generators that produce electricity and/or useful thermal output 

primarily to support the above-mentioned industrial activities.” Compared to residential, 

commercial and power sector of natural gas use, industrial use of gas is relatively stable, with 

small peaks in the winter. This sector composed 30.6% of the total natural gas consumption in 

2016.  
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Figure 1. Monthly Natural Gas Consumption by sector (Bcf) 

Figure 1 above depicts natural gas consumption in the different sectors from 2008 to 

2016. Total natural gas consumption follows a strong seasonal pattern, in terms of both average 

and range perspective. There are two consumption peaks: a big consumption peak in winter due 

to the high heating consumption in residential and commercial sectors, and a small consumption 

peak in summer resulting from high cooling consumption, which is mainly reflected in the power 

sector. Averaging through 2001 to 2016, the average monthly total natural gas consumption is 

displayed in Figure 2. December, January, February and March have the highest consumption 

due to low temperature and the resulting high heating consumption. July and August have a 

small peak consumption because of high cooling consumption. The other months lies in between. 

As weather is volatile and the main driver for winter consumption, winter months’ total natural 

gas consumption displays larger variance. In Figure 2, the vertical bar for each month indicates 

the consumption range from 2001 and 2016.  
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Figure 2. Average Monthly Natural Gas Total Consumption 2001-2016 (Bcf) 

U.S. natural gas domestic gas production has increased dramatically since 2005. From 

1973 to 2005, U.S. natural gas production was relatively stable. Since 2005, production increased 

significantly because of the shale gas boom facilitated by the technology advance of hydraulic 

fracking and horizontal drilling. In 2005, U.S. natural gas supply was 18,927 billion cubic feet 

with negligible gas withdrawal from shale gas wells. Supply reached 28,752 billion cubic feet in 

2015 with 47% of the production coming from shale gas wells. Total production increased by 

51.91% in 8 years. Unlike natural gas consumption, natural gas production does not have an 

obvious seasonal pattern within a year. The production is quite smooth through the year. 

Production in each month is just around the yearly average level. Many of the monthly 

fluctuations are the result of extreme weather events such as Hurricane Katrina in 2005 August 

and Hurricane Rita in 2009. Other than that, natural gas production throughout a year is quite 

stable (Figure 4).  
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Figure 3. U.S. Natural Gas Marketed Production (Bcf) 

 
Figure 4. U.S. Average Monthly Natural Gas Production (Bcf) 

The U.S. net natural gas import decreases significantly from 3.6 tcf in 2005 to 0.7 tcf in 

2016. Net import decrease accounts for 31% of the total production increase of 9.4 tcf from 2005 

to 2016 while domestic consumption increase uses the remaining. Until 2016, U.S. is a net 

natural gas importer with imports coming primarily from Canada and Mexico through pipelines, 

and some from Trinidad in the form of liquefied natural gas (LNG). U.S. also exports natural gas 

to Canada and Mexico through pipelines and to Asian countries such as Japan in the form of 

LNG. U.S. natural gas exports increase dramatically in the beginning of 2000’s, while imports 

decreased since 2005, when the natural gas production increases. As a result, net import 

decreased substantially since 2005, as illustrated in Figure 5.  
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Figure 5. U.S. Natural Gas Imports, Exports from 1973 to 2016 

Inventory plays an important role in natural gas market due to seasonal imbalance of 

production and consumption. Natural gas consumption has strong seasonal pattern while 

production is relatively stable all year round due to facility capacity constraints. To balance the 

consumption and supply of natural gas, storage is necessary and follows obvious seasonal 

pattern. Different months have different storage behaviors. April to October can be seen as the 

injection season, with very low withdrawal amounts and very large injection amounts and net 

storage is positive. The produced natural gas will be partly saved for winter peak season use. 

September and October marks the end of injection season and the total working gas storage 

reaches its highest level. November to March is withdrawal season, with large amounts of stored 

gas being used and nearly no injection. In winter, storage level is one of the major price drivers 

as it serves as a large portion  of total supply. For example, 971 Bcf natural gas storage was used 

in 2014 January, accounting for over 30% the total consumption during this period. Storage is 

volatile and significantly affected by consumption shifters, mainly weather factors. The huge 

2014 January consumption of natural gas storage is mostly a result of extreme cold winter.  
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1.2 Natural Gas Price Behavior 

Natural gas price displays an obvious downward trend in recent years especially since 

2008 due to technological advancement of shale gas. As Figure 6 exhibits, from 2001 to 2008, 

Henry Hub natural gas spot price was generally above $5 while it remained under $5 thereafter 

for most of the time. This is consistent with production increases beginning in 2005 while total 

consumption is relatively stable. Seasonal natural gas consumption in residential, commercial 

and electrical sector results in seasonal natural gas price pattern: price is slightly higher in 

heating season. A cold winter would induce large heating consumption in residential and 

commercial sectors, and large consumption in electric power sector. Increased consumption puts 

upward pressure on natural gas price. However, the price difference between months is not 

exceptionally large because storage can be used to balance total supply and desired consumption.  

 
Figure 6. Henry Hub Natural Gas Spot Price ($/MMBtu) 

Natural gas price is one of the most volatile among energy prices. Natural gas demand 

and supply in the short-term is quite price inelastic. On the consumption side, most natural gas 

appliances and facilities are durable goods and require considerable investment and time to 

change. As the major usage, heating and electricity feedstock are necessity goods so that natural 

gas consumption is quite rigid in the short-term. Similarly, increasing natural gas production 
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requires long-term investment. Storage is constrained by facility capacity as well. As a result, 

short-term natural gas supply is inelastic. Besides the supply constraint, the transportation 

capacity to deliver natural gas to end users is limited by pipeline capacity and is difficult to 

increase in a short period.  The inflexibility of both supply and consumption sides lead to abrupt 

price change when there is a shock to either the supply side or the demand side. This feature is 

especially magnified in winter heating months. As shown in Figure 7, winter season (November 

to March) price shows higher average level and the higher price level is consistent with higher 

consumption in heating season. Price is lowest for seasons with not much heating and cooling 

consumption. Natural gas price is more dispersed when average consumption is high, as the main 

driving factor – weather is quite volatile, resulting in volatile consumption. The observed 

historical price feature is consistent with consumption and supply features discussed above.  

 
Figure 7. Henry Hub Natural Gas Price Distribution by Month – Boxplot 

To better measure natural gas price volatility, Henry Hub daily natural gas spot price was 

collected and summarized. Price change is defined as natural log of price ratio between current 

and prior period: 1ln( / )t t tp p p −= . As Henry Hub daily spot price is only available on trading 
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days, all t refers to trading days (excludes weekend and holiday). As summarized in Table 1, 

historical data shows larger volatility in winter heating months than in other months. From 1997 

to early 2017, average daily price change is generally larger than 3% during October to February, 

when heating need is high and thus natural gas consumption peaks. The other months have 

smaller average price change. The standard deviation of daily price change exhibits consistent 

result: October to March shows much larger standard deviation of price change compared to 

other months. The result using data beginning in 2010 is similar: winter months’ daily price 

change shows large average level and standard deviation. However, the magnitude is in general 

smaller than the whole 1997~2017 period. Both price and its volatility show seasonal patterns, 

which mainly relates to consumption change due to weather condition.  

Table 1. Henry Hub Daily Spot Price % Change Level and Standard Deviation 

 
1997 - 2017 2010 - 2017 

Month 

Average of Absolute 
Daily Price Change 

(%) 

StdDev. of 
Daily Price 

Change 

Average of Absolute 
Daily Price Change 

(%) 

StdDev. of 
Daily Price 

Change 
January 3.40 4.63 3.26 4.33 
February 3.53 6.98 3.53 6.33 
March 2.51 4.15 2.76 5.25 
April 2.04 2.70 1.92 2.75 
May 2.14 2.93 1.96 3.06 
June 2.17 3.07 1.80 2.58 
July 2.15 2.81 1.52 2.12 

August 2.34 3.33 1.43 1.90 
September 2.95 4.21 1.67 2.19 

October 3.47 5.03 1.79 2.52 
November 4.11 6.35 2.89 3.93 
December 3.40 5.13 2.57 4.21 

Grand Total 2.84 4.44 2.25 3.65 
 

As discussed above, weather is a key factor driving natural gas consumption, storage, 

price and price volatility. For example, early 2016 saw mild weather and consumption was weak 

compared to average level. As a result, natural gas price reached a 17-year low of $1.64. Contrast 
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to the case of 2016, the 2013 winter was unusually cold, underground working gas storage 

decreased to an almost 10-year history low of 857 bcf and price hit 5-year high of $6 per MMBtu 

in April, 2014. Price increased sharply from October 2013 until February 2014, then reverted 

back to normal range gradually afterwards.  

Volatile natural gas price creates difficulty for energy price risk management for all 

market participants. The uncertainty drives the need for hedging and volatility is a key input to 

value derivatives like futures contracts. Natural gas volatility spills over to other energy sectors 

as well. A considerable amount of natural gas is used for marginal electricity plant feedstock 

instead of baseload fuel. Thus, large natural gas price movement indirectly affects electricity 

market. Understanding natural gas price determinants, volatility and dynamics is crucial for 

hedging the risk associated with it.  

1.3 Literature Review 

There are many studies in the literature covering various aspects of the natural gas 

market: including determinants of price, consumption trend and estimation, its relationship with 

other energy source, and the impact of shale gas boom. With respect to the economics of  natural 

gas storage and price volatilities, which is the focus of this research, the current natural gas 

storage literature focuses primarily on the valuation of a specific storage facility using different 

methods. A representative paper by Carmona and Ludkovski (2010) develops an “optimal 

switching model”, using dynamic programming to choose a series of time and actions (injection 

or withdrawals) to maximize profit. Schoppe (2010) uses the knowledge gradient approach with 

non-parametric estimation method. Boogert and Jong (2008) extend the Least Square Monte 

Carlo method for American options to value a storage facility. Thompson (2009) solves a system 

of partial differential equations using the method of radial basis function collocation. Hoffler 
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(2007) estimates consumption for natural gas storage based on historical data extrapolation. 

Swing consumption (winter consumption minus summer consumption) is satisfied by indigenous 

production, import and storage. Optimal storage equals swing consumption minus production 

and import. De Joode’s (2010) method is similar to Hoffler (2007), and bases the estimation on 

the comprehensive GASTALE model. These papers related to natural gas storage do not take 

weather shocks into account even though weather is the most important affecting factor of 

natural gas storage.  

The relationship among natural gas price, weather shock and storage levels are discussed 

in other papers, most of which use time-series models. Geman and Ohana (2009) conduct rank 

correlation tests and found that natural gas inventory level and price volatility are negatively 

related. This negative correlation is pronounced only during periods of scarcity. The correlation 

increases significantly in winter for natural gas. The GARCH model is often used in 

understanding the relationship among natural gas price, price volatility and storage level. 

GARCH is able to capture the heteroskedasticity in the volatility of prices. Mu (2007) uses a 

GARCH model to estimate how weather shocks affect the conditional mean and variance of 

natural gas futures returns and finds that weather is an important factor in determining natural 

gas futures returns. Pindyck (2004) utilizes GARCH to analyze natural gas price volatility and 

finds that natural gas volatility fluctuates over time and the changes are transitory.  

While the above papers do well in explaining volatility observed in financial data, there is 

no solid theoretical foundation that justifies their usage in natural gas markets. Economic theory 

argues that price changes are rooted in changes in supply and consumption factors. However, it 

is difficult to link this fundamental supply-consumption relationship to GARCH models. 

Kanamura (2009) constructed a supply and demand based volatility (SDV) model and shows that 
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there exist inverse leverage effect in energy market, that is volatility increases in energy price. 

van Goor and Scholtens (2014) generalize the SDV model to account for different consumption 

and supply assumptions. However, this model does not take natural gas inventory into account. 

Weather’s impact on pricing dynamics is not discussed in detail as well.  

The existing literature supports the statement that market fundamentals are the key 

determinant of natural gas price and variance. However, most of the models used to explain 

natural gas prices focus on historical price realizations and do not provide insights as how to how 

price patterns are determined by market participants’ behavior. In addition, their reliance on 

historical observations prohibits the models from explaining if there is structural change or shock 

on the consumption or supply side, and how the natural gas price and its volatility evolve over 

time. There is also a  large structural models named NEMS which is maintained by EIA that can 

analyze natural gas storage and price. However, NEMS does not  focus on the weather effect on 

the storage and prices, so it cannot explain the relationship between price changes and weather 

explicitly. More importantly, natural gas price is quite volatile compared to other energy prices 

and mostly driven by weather conditions. However, how price volatility is related to weather 

conditions has not been carefully discussed in the current literature. 

1.4 Purpose 

In general, the existing literature finds that inventory plays an important role in the 

natural gas market. Natural gas price and volatility display seasonal patterns that are driven by 

weather conditions and storage level. However, the interrelationship is not captured by a single 

comprehensive model and has not yet been discussed in detail in the current literature, using a 

model that incorporates major market participants’ behavior.  
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This research aims to construct a model that can mimic the major market participants’ 

behavior and reproduce the natural gas price with mean and standard deviation patterns 

consistent with historical observation: higher average level and standard deviation in peak 

consumption season. We estimate natural gas consumption and supply function in a way that the 

current period volume is highly correlated with previous period volume. Price will be inter-

temporally correlated under competitive storage model. The objective of this study is to explain 

natural gas price and storage behavior based on market fundamentals, including consumption 

and supply. 

We can utilize the framework to understand the impact of storage level and weather 

conditions on price levels and volatility over time. This research will quantify weather variables’ 

impact on natural gas price and its standard deviation. In addition, we can discuss the 

relationship between storage and price behavior.  

The thesis is organized as following: a conceptual natural gas competitive storage model 

is constructed in chapter two. In order to solve the conceptual model, the major functions 

involved like consumption, production and net storage cost functions are specified and calibrated 

in chapter three. Chapter four describes the numerical solving algorithm in detail. Model 

performance and results are discussed in chapter five. The usefulness of the model is illustrated 

in Chapter 6 where the impacts of increased future demand for LNG are simulated. 
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CHAPTER 2. CONCEPTUAL MODEL FRAMEWORK 

 

This chapter conducts a brief literature review of the competitive storage model and 

explains why using a monthly competitive storage model is suitable for analyzing natural gas 

price dynamics. The conceptual model framework is also presented in this chapter.  

The competitive storage model is widely used for agricultural commodities and does a 

good job in explaining price dynamics in the short run. Williams and Wright (1991) combine a 

market equilibrium condition with a non-arbitrage condition to construct a rational-expectations 

competitive storage model for grain. Total demand and total supply clears the market while price 

satisfies inter-temporal non-arbitrage conditions at the same time. Miranda (1997) proposes and 

compares different methods to solve the competitive storage model and concludes that the 

collocation method performs better than alternatives. Deaton and Laroque (1992, 1995 and 1996) 

test the power of the competitive storage model by empirically estimating its relevance for 

eleven commodities. They found that the high level of serial correlation of commodity price 

could not be replicated by arbitrage storage behavior. To address the inability of the rational 

expectations storage model to explain high price correlation observed by Deaton and Laroque, 

Miranda and Rui (1999) assume a classical supply of storage function capturing the negative 

intertemporal price spreads when stocks are positive. Marginal storage cost is assumed to 

comprise of both physical storage cost and a marginal “convenience yield”. The application of 

classical supply of storage function addresses the issue examined by Deaton and Laroque. 

Cafiero et al. (2011) uses a finer grid when estimating the rational expectation storage model and 

obtain a high level of autocorrelation for major commodities as well. Peterson and Tomek (2005) 
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apply a monthly competitive storage model to simulate U.S. corn market cash price and futures 

price with key characteristics consistent with historical observations.  

Most applications of the competitive storage model analyze policy scenario impacts for a 

specific commodity or several commodities (Miranda and Glauber, 1993; Lence and Hayes, 

2002). Tran (2013) utilizes the model to assess the food price impact resulted from increased 

corn consumption from US ethanol production and mainly focused on its price impact in 

transitionary period.  

The rational expectation storage model has not been applied to the natural gas market to 

my knowledge. One question that needs to be answered is whether the model is actually suitable 

for explaining natural gas market and price dynamics. As discussed above, storage plays an 

important role in balancing seasonal consumption and production. The existing literature 

illustrates the significant causal relationship between inventory and natural gas price. With 

storage’s importance established, the model would apply if natural gas price can be mostly 

explained by market fundamentals like consumption, production and storage behavior instead of 

simple speculation. Hulshof et al. (2016) concludes that natural gas price is mainly affected by 

gas market fundamentals including availability and temperature. Nick and Thoenes (2014) using 

a structural VAR model shows similar results: natural gas price is mainly driven by temperature 

and total supply in the short term. Knittel and Pindyck (2016) use the storage model to analyze 

the crude oil price spike around 2008 and conclude that the price change is consistent with 

production, inventory and convenience yields. Speculation had minimal effect on crude oil 

prices. Using structural vector autoregression (SVAR) model, Wiggins and Etienne (2017) reach 

a similar conclusion for natural gas market as Knittel and Pindyck (2016) did for crude oil 

markets. Their SVAR model indicates that during 1993 to 2015, natural gas price fluctuation is 
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mainly driven by supply and consumption shocks. Speculative activities plays a minor role. 

Based on the existing literature, we believe that rational expectations storage model which 

incorporates the behavior of major market participants’ behavior is theoretically applicable for 

explaining natural gas market.  

As natural gas is produced continuously, there are natural gas injection and withdrawal 

every month. Natural gas consumption for residential, commercial and electrical sectors have 

obvious seasonal pattern. We thus employ a monthly model instead of an annual or quarterly 

one.  

This study follows Williams and Wright’s (1991) concept of the competitive storage 

model: price and storage are determined so that natural gas total supply and total consumption 

clears the market each month. Natural gas price satisfies an inter-temporal non-arbitrage 

condition at the same time. The competitive storage model presented here simplifies the natural 

gas market while incorporating the main behavior of key market players. A single competitive 

national natural gas market is assumed to exist. Three major agents in the natural gas market are 

modeled: natural gas producer, gas consumers and storer. Producers drill gas wells and extract 

natural gas to deliver to the market. Four broad categories of gas end-users including residential, 

commercial, industrial and electrical power consumers consume gas. The storer holds natural gas 

to future periods as long as the price appreciation covers the net cost of carry. For each period, 

the market clears so that the total supply of natural gas equals total gas consumed and stored. 

Monthly model is used to better capture the seasonal variation of key seasonal measurements like 

price, consumption and storage.  
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2.1 Consumption 

As discussed above, natural gas end-use consumption has four broad categories: 

residential, commercial, industrial and electric power sector.  So the four most dominant sectors 

of natural gas consumption considered in the storage model are natural gas consumption of 

residential (𝐷𝐷𝑟𝑟), commercial sector (𝐷𝐷𝑐𝑐), electric power sector (𝐷𝐷𝑒𝑒) and industrial sector (𝐷𝐷𝑖𝑖𝑖𝑖). 

The total end-use natural gas consumption is the summation of the consumption of these four 

sectors. 

 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚) = 𝐷𝐷𝑟𝑟

(𝑚𝑚) + 𝐷𝐷𝑐𝑐
(𝑚𝑚) + 𝐷𝐷𝑒𝑒

(𝑚𝑚) + 𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚),  (1) 

where m denotes the month, which corresponds to January, February, …, December. 

Natural gas consumption in each month is mainly driven by natural gas price and 

weather. More specifically, besides the impact of price on consumption, the consumption of all 

four sectors generally increases with cold weather conditions for heating purpose. In summer, the 

electric sector is highly driven by cooling demand.  

To evaluate weather impact on natural gas consumption, two variables are used to reflect 

energy consumption under a specific temperature: heating degree days (HDD) and cooling 

degree days (CDD). By the convention of National Oceanic and Atmospheric Administration 

(NOAA)1,  

 𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,65 − 𝑇𝑇) ,    𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑇𝑇 − 65),   

where T denotes the daily temperature in degrees Fahrenheit.  

                                                 

1 National Weather Service, The National Oceanic and Atmospheric Administration (NOAA).  

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/ddayexp.shtml 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/ddayexp.shtml
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The state level HDD and CDD are directly available from NOAA. For regional level 

HDD and CDD, we use the monthly gas-population weighted cooling degree days and heating 

degree days. The monthly degree days are the summation of the degree days within that month.  

Monthly natural gas consumption are highly correlated with cooling degree days and 

heating degree days (cdd and hdd). With the consideration of price impact, natural gas 

consumption for different sectors Di is generally a function of price and weather condition. 

 𝐷𝐷𝑖𝑖
(𝑚𝑚) = 𝐷𝐷𝑖𝑖

(𝑚𝑚)�𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚)�, 𝐷𝐷𝑖𝑖 ∈ {𝐷𝐷𝑟𝑟 ,𝐷𝐷𝑐𝑐,𝐷𝐷𝑒𝑒 ,𝐷𝐷𝑖𝑖𝑖𝑖}.   

The total monthly consumption is the summation of consumption from these four sectors, 

and is accordingly a function of price (p), heating degree days (hdd), and cooling degree days 

(cdd). As consumption is subject to a random shock (𝜀𝜀𝐷𝐷𝑚𝑚), the total consumption of each month 

can be expressed as:  

 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚) = 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡

(𝑚𝑚)(𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚))𝜀𝜀𝐷𝐷𝑚𝑚.  (2) 

2.2 Production 

The producer’s decision is made based on three factors: production cost, expected next 

month price and expected next year price. Production is determined by short-term planning as 

well as medium to long-term investment of drilling and extraction facilities. It is assumed that 

natural gas production using existing wells takes one month from planning to realization. The 

expected next year price represents investment incentives for producers. Producers are assumed 

to react to market price change one year ahead. This specification is different from consumers, 

whose consumption is based on current observed gas price.  

To be more specific, the production decision is made in month m. In month m, period 

(m+1) price is unknown and producers can only respond to expected next month (m+1) price 

𝐸𝐸𝑚𝑚�𝑝𝑝(𝑡𝑡,𝑚𝑚+1)�. Producers are sophisticated market agents. Their investment activities (e.g. 
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drilling extra wells) are forward-looking, based on cost and next year price expectation to 

respond to price change due to market change. The investment starting in year (t-1) is dependent 

on average price in year t and will be effective in year t. The realized gas production is subject to 

random shock due to uncertainties like productivity and production suspension resulting from 

extreme weather conditions. Natural gas production is determined as following: 

𝑃𝑃𝑃𝑃(𝑡𝑡,𝑚𝑚) = 𝛽𝛽0𝑃𝑃𝑃𝑃(𝑡𝑡,𝑚𝑚−1) �
𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑡𝑡) )
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) �

𝛽𝛽1

�
𝐸𝐸𝑡𝑡,𝑚𝑚(𝑝𝑝(𝑡𝑡,𝑚𝑚+1))

𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) )

�
𝛽𝛽2

𝜀𝜀𝑝𝑝𝑝𝑝, (3) 

where t denotes year and m represents month; 𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) ) is the expected consumption-

weighted average price of all 12 months of year (t) at the beginning of year (t-1); 𝐸𝐸𝑡𝑡,𝑚𝑚�𝑝𝑝(𝑡𝑡,𝑚𝑚+1)� 

denotes the expected price next month; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) is the production cost of year t; 𝛽𝛽1 and 𝛽𝛽2 

represents the investment and short-term price elasticity respectively; and 𝜀𝜀𝑝𝑝𝑝𝑝 is the production 

shock. 

When the mean price of a year is higher than the cost, the producers tend to increase the 

investment and produce more natural gas, and vice versa. 

The monthly total supply (𝑇𝑇𝑇𝑇(𝑚𝑚)) of natural gas is composed of the previous month total 

production of the natural gas, net imports, and the current total working gas storage. 

 𝑇𝑇𝑇𝑇(𝑚𝑚) = 𝑃𝑃𝑃𝑃(𝑚𝑚−1) + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑚𝑚−1) + 𝑠𝑠(𝑚𝑚−1) = 𝑇𝑇𝑇𝑇(𝑚𝑚−1) + 𝑠𝑠(𝑚𝑚−1),  (4) 

where 𝑇𝑇𝑇𝑇(𝑚𝑚−1) denotes the total supply from the producer including the monthly production of 

previous month (𝑃𝑃𝑃𝑃(𝑚𝑚−1)) and the monthly net import (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑚𝑚)). 𝑠𝑠(𝑚𝑚−1) denotes the storage 

carried over from the previous month. As net import volume is small relative to total production 

and consumption level, it is ignored in this section.  
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According to equation (4), the total production in the current month serves as the natural 

gas supply of next month. Taking into account random shock production, the total production of 

the month thus can be expressed as:  

 𝑇𝑇𝑇𝑇(𝑚𝑚) = 𝑇𝑇𝑇𝑇�𝐸𝐸𝑡𝑡,𝑚𝑚(𝑝𝑝(𝑡𝑡,𝑚𝑚+1)),𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) )�𝜀𝜀𝑃𝑃𝑃𝑃𝑚𝑚 .  (5) 

2.3 Equilibrium Condition 

The natural gas available at month 𝑚𝑚 will be either consumed immediately or stored for 

future use. The market clears so that monthly total supply equals monthly total consumption and 

the storage for next period. The storage can be seen as speculative or precautionary consumption. 

That is: 𝑇𝑇𝑇𝑇(𝑚𝑚) = 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚) + 𝑠𝑠(𝑚𝑚). With equations given above, we have 

 𝑇𝑇𝑇𝑇(𝑚𝑚) = 𝑇𝑇𝑇𝑇(𝑚𝑚−1) + 𝑠𝑠(𝑚𝑚−1) = 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚)�𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚)� + 𝑠𝑠(𝑚𝑚), (6) 

Or equivalently,  

𝑠𝑠(𝑚𝑚) = 𝑇𝑇𝑇𝑇(𝑚𝑚) − 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚)�𝑝𝑝(𝑚𝑚), ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚)� 

= 𝑇𝑇𝑇𝑇(𝑚𝑚−1) + 𝑠𝑠(𝑚𝑚−1) − 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚)�𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚)� ≥ 0, 

Storage is the remainder of the total availability minus the amount of natural gas consumed.  

2.4 Storage Decision  

Natural gas storage facilities are now operated in a very competitive way. Prior to 1994, 

pipeline companies own most of the natural gas storage and had exclusive control of the storage 

facility utilization. Federal Energy Regulatory Commission (FERC) Order 636 requires interstate 

pipeline companies to operate storage facilities on an open-access basis. That is, “the major 

portion of working gas capacity (beyond what may be reserved by the pipeline/operator to 

maintain system integrity and for load balancing) at each site must be made available for lease to 

third parties on a nondiscriminatory basis.” After natural gas market deregulation and 
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liberalization, natural gas storage facilities can be rented and used by any participants with the 

sole purpose of profit maximization. (De Jong and Walet, 2003) 

As the natural gas market now can be seen as competitive market, storage level is 

determined by arbitrageurs. We assume the arbitrageurs are rational decision makers. From 

period t to period t+1, inventory holders want to maximize their profit while running the storage 

facility. Assuming a constant monthly interest rate r and denoting the total net storage cost as sc, 

the storer’s maximization problem is as follows.  

 
𝐸𝐸�𝜋𝜋(𝑚𝑚+1)�𝑠𝑠(𝑚𝑚)

𝑚𝑚𝑚𝑚𝑚𝑚 =
1

1 + 𝑟𝑟
𝐸𝐸𝑚𝑚(𝑝𝑝(𝑚𝑚+1))𝑠𝑠(𝑚𝑚) − 𝑝𝑝(𝑚𝑚)𝑠𝑠(𝑚𝑚) − 𝑠𝑠𝑠𝑠(𝑚𝑚), 𝑚𝑚 = 1, 2, 3, … , 12, 

s.t.  𝑠𝑠(𝑚𝑚) ≥ 0, 

 (7) 

where  𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)� is the expected price of natural gas of the next month (m+1, when m = 12 

(Dec), m+1 = 1 (Jan)). 𝑠𝑠𝑠𝑠(𝑚𝑚) is the total net carry cost of the current month. 𝑟𝑟 is the discount 

rate, we use LIBOR 1-month interest rate in this study. 

The first order condition is 

�

1
1 + 𝑟𝑟

𝐸𝐸�𝑝𝑝(𝑚𝑚+1)� − 𝑝𝑝(𝑚𝑚) − 𝑠𝑠𝑐𝑐′(𝑚𝑚) = 0, 𝑠𝑠(𝑚𝑚) > 0,

1
1 + 𝑟𝑟

𝐸𝐸�𝑝𝑝(𝑚𝑚+1)� − 𝑝𝑝(𝑚𝑚) − 𝑠𝑠𝑐𝑐′(𝑚𝑚) < 0, 𝑠𝑠(𝑚𝑚) = 0,
 

where 𝑠𝑠𝑠𝑠′ is the marginal net carry cost.  

Alternatively, we can rewrite above conditions in the format to define storage demand:  

�
�

1
1 + 𝑟𝑟

𝐸𝐸�𝑝𝑝(𝑚𝑚+1)� − 𝑝𝑝(𝑚𝑚) − 𝑠𝑠𝑐𝑐′(𝑚𝑚)� 𝑠𝑠(𝑚𝑚) = 0,

1
1 + 𝑟𝑟

𝐸𝐸�𝑝𝑝(𝑚𝑚+1)� − 𝑝𝑝(𝑚𝑚) − 𝑠𝑠𝑐𝑐′(𝑚𝑚) ≤ 0.
 (8) 

Intuitively, arbitrage inventory holders store natural gas in the anticipation of profit. If the 

net storage cost of one unit of natural gas is higher than the expected profit from holding stock 
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from period m to next period (m+1), no gas will be stored. When cost of storage is low and there 

is profit of inventory, storers will buy more gas from the market with purpose of selling it at a 

higher price in the future.  

Natural gas consumption is seasonal and most of the storage will be carried over to 

winter to satisfy peak natural gas usage from other seasons. The above equation defines the 

contemporary non-arbitrage condition on a monthly basis. That is, the non-arbitrage is based on 

one month ahead expectation. To validate that the above formulation is suitable to model the 

natural gas storage behavior, we need to justify that a one month ahead arbitrage equation is 

sufficient to capture seasonal carryover of gas storage. 

In an ideal market, the contemporary non-arbitrage condition holds for any kind of time 

frequency defined, whether it is a long time horizon such as one year  or more frequent intervals 

like weekly or daily, if the market is liquid enough and there is no transaction cost or friction. 

Otherwise, speculative inventory holders will seek profit from trading until the non-arbitrage 

condition is met. 

The non-arbitrage condition is applicable not only for speculative storage but also applies 

to precautionary storage. For speculative storage, the sole purpose is to buy at a low price, hold 

inventory and sell it at higher price in next period. For precautionary inventory holder, mostly 

power plant and manufacturers, they store natural gas for convenience purpose. The storage can 

reduce their cost to revise their production schedule and decrease the risk of stock out. To 

incorporate both speculative and precautionary storage into the model, we define the net storage 

cost as a combination of physical storage cost and convenience yield. The natural cycle of 

natural gas storage is one year, with gas injection in late spring to early fall when natural gas 

production is higher than the volume consumed, and gas withdrawal in winter to meet high 
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heating need. The yearly cycle is incorporated into the model with the notion of “normal storage 

level”. Normal storage level will be used for net storage cost calibration. More details will be 

given in chapter three “model specification and calibration” section. 

With the development and expansion of high-deliverability storage sites, natural gas 

storage facilities are not restricted to seasonal cycling and are able to serve the purpose of short-

term profit maximization. Most natural gas is stored underground in three major types: depleted 

fields, salt caverns and aquifers. Among the three types, salt caverns have the highest 

deliverability and highest cycling rate. A salt cavern has the ability to perform as many as a 

dozen withdrawal and injection cycles within one year. They are very responsive to consumer 

consumption and price change as salt cavern storage field is able to send out natural gas in a very 

short time, even within an hour. In addition, gas withdrawal and injection can happen at the same 

time for salt cavern field. As of 2015, the storage capacity of salt cavern reaches 709Bcf, 

increasing from 189Bcf from 2000. The increasing number and high capacity of salt cavern 

makes high frequency arbitrage feasible. 

Monthly instead of a yearly or quarterly model is used in this study as consumption and 

its key drivers varies even within same season. The employment of a monthly model will better 

capture the monthly consumption variation. Monthly model is able to quantify weather impact 

more accurately than seasonal models. In addition, the purpose of this study is to generate 

monthly price series that is consistent with observed prices. 

To summarize the timeline of decision making of the three major market participants 

discussed above: Production decision is made in period (m-1) and the actual produced amount is 

realized in period m with shock 𝜀𝜀𝑃𝑃𝑃𝑃𝑚𝑚 . At the end of period (m-1) or equivalently at the beginning 

of period m, the stock carried over from last period is a known number 𝑠𝑠(𝑚𝑚−1). In period m, 
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weather variables HDD, CDD and consumption shock 𝜀𝜀𝐷𝐷𝑚𝑚 will be realized. State variables denote 

the available information of each month for decision making. The state variables in each months 

are: total supply 𝑇𝑇𝑇𝑇(𝑚𝑚) with supply shock 𝜀𝜀𝑃𝑃𝑃𝑃𝑚𝑚 , consumption shock 𝜀𝜀𝐷𝐷𝑚𝑚, and weather conditions 

HDD and CDD.  

The purpose of the conceptual model is to solve for a policy function 𝑝𝑝(𝑚𝑚) so that 1) the 

market clears at price 𝑝𝑝(𝑚𝑚) given the format of total consumption function (𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚)), and 2) inter-

temporal non-arbitrage condition is satisfied through the control of amount of natural gas stored 

for next period usage.  

Chambers and Bailey (1996) proved the existence of a unique rational expectations 

equilibrium. We define price as a function of state variables: weather condition, total supply and 

consumption shock. 

 𝑝𝑝(𝑚𝑚) = 𝑝𝑝(𝑚𝑚)�ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚), 𝜀𝜀𝐷𝐷𝑚𝑚�.  (9) 

To account for weather shock, we see HDD and CDD in each month as random variables 

with certain distributions. Thus, we can substitute the above equations to the first order condition 

and get the below equation when stock is positive.  

 1
1 + 𝑟𝑟

𝐸𝐸�𝑝𝑝(𝑚𝑚+1)(ℎ𝑑𝑑𝑑𝑑(𝑚𝑚+1), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚+1),𝑇𝑇𝑇𝑇(𝑚𝑚) + 𝑠𝑠(𝑚𝑚) , 𝜀𝜀𝐷𝐷𝑚𝑚+1)�

= 𝑝𝑝(𝑚𝑚)�ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚), 𝜀𝜀𝐷𝐷𝑚𝑚� + 𝑠𝑠𝑐𝑐′(𝑚𝑚)�𝑠𝑠(𝑚𝑚)�. 

(10) 

When we substitute the price function and take the price expectation with respect to the 

weather conditions (ℎ𝑑𝑑𝑑𝑑(𝑚𝑚+1) and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚+1)) and random consumption and supply shocks, we 

would observe the storage decision as an endogenous function of price, showing the relationship 

of the monthly storage level (𝑠𝑠(𝑚𝑚)) to the current weather conditions (ℎ𝑑𝑑𝑑𝑑(𝑚𝑚) and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚)) and 
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the total supply (𝑇𝑇𝑇𝑇(𝑚𝑚)). Subsequently, we can make storage decision based on the current state 

variables as well (weather conditions and total supply). 

 𝑠𝑠(𝑚𝑚) = 𝑠𝑠�ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚), 𝜀𝜀𝐷𝐷𝑚𝑚�.  (11) 

Equation (2), (3), (6) and (8) together defines the competitive storage model framework. 
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CHAPTER 3. MODEL SPECIFICATION AND ESTIMATION 

 

To solve the rational-expectations storage model and apply the model to scenario 

analysis, the functions need to be calibrated to mimic the behavior of producers and consumers 

as close as possible. Regarding the scope of this study, we need to calibrate 1) the natural gas 

demand functions to capture consumer’s response to price and weather condition changes; 2) the 

natural gas supply function to fit and predict producers’ decision based on their expectations 

about natural gas price; 3) storage cost and convenience yield because storage facility operators 

make decisions based on current price, expected price and the cost to carry natural gas from 

current period to the next period. Storage cost and convenience yield is an integral part of their 

decision making process.  

This chapter describes the function specification, calibration methodology and discusses 

the estimation result.  

3.1 Demand Specification and Estimation 

Identifying natural gas demand and supply functions is important not only in the sense of 

them being key inputs into the competitive storage model of this study, but also indicative of 

understanding of market participant’s behavior and their differences among sectors. There are 

many existing studies estimating natural gas consumption and supply elasticities. However, the 

number of studies using recent data to capture the structural change due to significant production 

increases since 2005 is limited. In addition, most studies focus on one consumption sector or 

supply only. A full set of consumption estimates covering all sectors, including residential, 

commercial, industrial and electrical using the most recent data and consistent methodology is in 

need. In this way, the elasticities for different sectors will be comparable and capture sector 
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differences, in terms of the magnitude of responsiveness to price change and dependence on 

weather conditions.   

All natural gas demand functions are assumed to follow AR(1) processes. As illustrated 

by Deaton and Laroque (1995, 1996), the serial correlation in commodity prices can be largely 

explained by supply and consumption autocorrelation in addition to speculative storage behavior. 

Consumption is sticky and any adjustment to consumption habit is made gradually. When there 

is a structural change in the supply-consumption relation, such as LNG export, or technology 

evolution that introduces higher consumption or supply, the inclusion of prior value will help 

ensure gradual market change, instead of a sudden change responding only to price. 

For all sectors, consumption is calibrated by season instead of applying a yearly 

consumption function to better capture the impact from weather variables and responsiveness to 

price movement in different seasons. Taking the residential sector for example, natural gas is 

mainly used for space heating in winter. The consumption level is driven primarily by weather 

conditions and HDD is highly positively correlated with consumption level. While in summer, 

most residential consumption comes from cooking, which is relatively insensitive to temperature 

change. Consumers do respond to different extents to the same driving factors throughout the 

year. As one of the major purpose of this study is to assess how much weather conditions can 

explain price change, it is important to accurately quantify the relationship between consumption 

and weather variables during the calibration process.  

Consumption is calibrated at the regional level. This study utilizes the U.S. climate region 

breakdown as defined by NOAA.2 The continuous United States is divided into 9 climate 

                                                 

2 Source: NOAA website https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-
regions.php#references 

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php#references
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php#references
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regions: Northeast, Southeast, Ohio Valley (Central), Upper Midwest, South, Northern Rockies 

and Plaines, Northwest, Southwest and West. Hawaii and Alaska are excluded. The area within 

each region is climatically consistent (Karl and Koss, 1984). 

 
Figure 8. U.S. Climate Regions 

Constant elasticity function format is assumed. To be consistent with historical 

observations, time trend and region dummies are added into the consumption functions as 

necessary. The consumption of each sector is different between months and region. Monthly 

dummies are added to capture monthly variations which cannot be explained by weather 

conditions and price movements. For example, specific calendar-driven factors, like holidays or 

special season, are important and will lead to month-to-month difference in consumption 

(Sánchez-Úbeda and Berzosa, 2007). Region specific dummy variables are added because there 

are significant regional difference in natural gas consumption. For northern states like Michigan 

and Minnesota, natural gas consumption is quite high especially in winter due to necessary 

heating consumption. Natural gas availability for different geographical regions varies and 

infrastructure is not the same as well. In addition, region-level policy affects the energy-efficient 

technology utilization. All these factors lead to region-to-region differences in natural gas 

https://www.ncdc.noaa.gov/monitoring-references/maps/images/us-climate-regions.gif
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consumption. To account for these effects, monthly dummy and region dummy are introduced to 

the model to capture the monthly and regional variation in natural gas consumption. 

As discussed above, the regional natural gas consumption function for sector i and region 

j, is expressed further as below and follows AR(1) process. 

 𝑙𝑙𝑙𝑙�𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚)� =

𝛼𝛼𝑖𝑖𝑖𝑖,1 ∗ 𝑙𝑙𝑙𝑙�𝑝𝑝(𝑚𝑚)� + 𝛼𝛼𝑖𝑖𝑖𝑖,2 ∗ ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚) + 𝛼𝛼𝑖𝑖𝑖𝑖,3 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚)

+ 𝛼𝛼𝑖𝑖𝑖𝑖,4 ∗ 𝑙𝑙𝑙𝑙�𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚−1)� + 𝛼𝛼𝑖𝑖𝑖𝑖,5 ∗ 𝑦𝑦𝑦𝑦 + 𝛼𝛼𝑖𝑖,6

(𝑚𝑚) + 𝛼𝛼𝑖𝑖𝑖𝑖,7,
  𝑖𝑖 = 1 −  4; 𝑗𝑗 = 1 − 9,   

where 𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚) is the monthly consumption for sector i and region j, which is negatively correlated 

with 𝑝𝑝(𝑚𝑚) and positively correlated with 𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚−1), (𝛼𝛼𝑖𝑖𝑖𝑖,1 < 0,𝛼𝛼𝑖𝑖𝑖𝑖,4 > 0). 𝑝𝑝(𝑚𝑚) denotes natural gas 

price, Henry Hub natural gas spot price is used in this study; 𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚−1) is consumption of prior 

period; ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚) and 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚) are current month HDD and CDD values; time trend is expressed in 

year yr; 𝛼𝛼𝑖𝑖,6
(𝑚𝑚) is the monthly dummy to capture monthly deviation; and 𝛼𝛼𝑖𝑖𝑖𝑖,7 is the region dummy 

variable for each consumption sector to account for region over region difference. 

The total consumption can be expressed as the summation of the local consumption of all 

sectors and all regions, and thus as a function of price, weather conditions and prior consumption 

level. All the coefficients, 𝛼𝛼’s, can be estimated from the historical observations of all 

consumption sectors, corresponding weather conditions and price. 

 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚) = ��𝐷𝐷𝑖𝑖𝑖𝑖

(𝑚𝑚)
9

𝑗𝑗=1

4

𝑖𝑖=1

= 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡(𝑚𝑚)�𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚),𝐷𝐷(𝑚𝑚−1),𝑦𝑦𝑦𝑦,𝛼𝛼(𝑚𝑚)�,  

here the  𝛼𝛼(𝑚𝑚) = �𝛼𝛼𝑖𝑖𝑖𝑖
(𝑚𝑚)� is the month-specific coefficients including the monthly dummy and 

region dummy, 𝐷𝐷(𝑚𝑚−1) = �𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚)� is the consumption from previous month for each region, and  

p, HDD and CDD  are all monthly explanatory variables. The coefficients of the variables are 
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assumed different from season to season, i.e. the marginal effect of each explanatory variable is 

different for different seasons and constant over time.  

All the elasticities are estimated using historical observations. The data source used for 

natural gas consumption and supply estimation is from the Energy Information Administration 

(EIA) and weather data is from NOAA. Both natural gas data and weather data are available on a 

monthly basis. The data is provided at state, regional and national level. State level data is 

compiled into climate region level for consumption estimation. National data is used for supply 

estimation. Real price instead of nominal price is used in this study and CPI data is obtained 

from US Bureau of Labor Statistics.  

We assume price elasticity of all regions is the same. Therefore, the above consumption 

function can be expressed as:  

𝑙𝑙𝑙𝑙�𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚)� = 𝛼𝛼𝑖𝑖,1

(𝑚𝑚) ∗ 𝑙𝑙𝑙𝑙�𝑝𝑝(𝑚𝑚)� + 𝛼𝛼𝑖𝑖,2
(𝑚𝑚) ∗ ℎ𝑑𝑑𝑑𝑑𝑗𝑗

(𝑚𝑚) + 𝛼𝛼𝑖𝑖,3
(𝑚𝑚) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚) + 𝛼𝛼𝑖𝑖,4
(𝑚𝑚) ∗ 𝑙𝑙𝑙𝑙�𝐷𝐷𝑖𝑖𝑖𝑖

(𝑚𝑚−1)� + 𝛼𝛼𝑖𝑖,5
(𝑚𝑚) ∗

𝑦𝑦𝑦𝑦 + 𝛼𝛼𝑖𝑖,6
(𝑚𝑚) + 𝛼𝛼𝑖𝑖𝑖𝑖,7  ,                                 𝑖𝑖 = 1, … , 4; 𝑗𝑗 = 1, … , 9, 

Please note that one single national price is used for all four sectors and all regions in this study. 

Henry Hub price without regional or sector adjustment is used as the representative national 

price although natural gas price and its variation for different sectors and regions are not exactly 

the same. The price for residential use is most volatile and price for electric power and industrial 

sectors are relatively stable. The behavior of different natural gas end users varies slightly. 

Electrical, industrial and city gate prices adjust to market disequilibrium quickly while 

commercial and residential prices adjust slowly (Mohammadi, 2011). However, U.S. natural gas 

market is integrated and competitive after deregulation. Prices from different sectors are highly 

correlated. For price responsive end users like industrial and electrical sector, the correlation 

between the price delivered to end users and Henry Hub price is larger than 95%. The state level 
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natural gas city gate price links closely to Henry Hub price as well, with average correlation at 

91%. Henry Hub price is the most representative spot price in U.S. as the largest natural gas 

trading hub. Residential, commercial, industrial and electrical prices are always determined by 

adding a premium or discount to the Henry Hub spot price. Also, NYMEX natural gas futures 

price is closely related to Henry Hub price. Thus, Henry Hub price and NYMEX futures price 

are used in this study.  

The obstacle of using historical data to estimate the models is endogeneity due to 

simultaneous equations bias, as only the equilibrium prices and quantities are available from 

historical data. There are different methods used to estimate elasticity in existing literature. Arora 

(2014) estimates US natural gas consumption and supply price elasticity for both short run and 

long run using vector-autoregression (VAR) model. The data used in the study ranges from 1993 

to 2013.  The estimated consumption elasticity is -0.24 and the price elasticity of supply is 

between 0.1 and 0.42. Another set of studies use different instrument variables for elasticity 

estimation with the weather variable most commonly used. Davis and Muehlegger (2010) 

estimates natural gas consumption by sector, including residential, commercial and industrial, 

using weather variables as price instrument. Hausman and Kellogg (2015) utilize similar 

methodology as Davis and Muehlegger, using lagged weather in other states as instrument 

variable.  

This study follows the methodology used by Hausman and Kellogg (2015): natural gas 

price is instrumented by lagged weather variables in other regions. The estimation framework is 

similar to Roberts and Schlenker (2013): for storable commodities, storage connects prices 

among periods. As a result, consumption elasticity can be identified using past shocks. To avoid 

inconsistent coefficient estimation due to endogeneity, instrument variables are used. For 
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consumption elasticity estimation, the instrument variable should be selected so that it can only 

affect consumption indirectly from price. A natural candidate for instrument variable is lagged 

weather in other regions: Lagged weather in other regions is correlated with natural gas price 

because previous months’ weather drives consumption and thus storage level. From a 

competitive storage perspective, storage level affects price. For example, if previous months see 

extremely cold weather, storage level will decrease as more natural gas will be used for heating 

purpose. Lower storage level will increase price as total supply becomes tighter. Meanwhile, 

lagged weather in other regions won’t directly impact natural gas consumption if the current 

weather of this region is controlled for.  

Long run elasticity assumes energy related appliance, capital stock and infrastructure can 

respond to price changes. There are mainly two commonly used methodologies. The first is to 

incorporate capital stock utilization in the consumption estimation (Fisher and Kaysen, 1962; 

Dubin and Macfadden, 1984). The second is flow adjustment model or partial adjustment model 

(PAM). Due to limited availability of natural gas appliance and capital stock data, this study 

employs flow adjustment model to infer long-term price elasticity. Long run elasticity is defined 

based on Houthakker’s (Houthakker, Verleger and Sheehan, 1974) flow adjustment 

methodology. This methodology is still actively used in current literature (Lin and Prince, 2013; 

Dahl and Sterner, 1991). Consumption in the short run is less responsive to price than in the long 

run. In the short run, consumers tend to stick to current habits. In addition, it takes time to invest 

in energy related equipment/facilities and switch into new technology. For example, it may take 

several years for a power plant to switch from coal to natural gas as the feedstock. In 

Houthakker’s flow adjustment model, assuming there is no constraint, a desired consumption 𝑞𝑞𝑖𝑖𝑖𝑖∗  
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is assumed and it is a function of price 𝑝𝑝𝑖𝑖𝑖𝑖  and other variables 𝑦𝑦𝑖𝑖𝑖𝑖 .  𝑞𝑞𝑖𝑖𝑖𝑖∗ = 𝛼𝛼𝑝𝑝𝑖𝑖𝑖𝑖
𝛾𝛾𝑦𝑦𝑖𝑖𝑖𝑖

𝛽𝛽. The flow 

adjustment is set as:  

𝑞𝑞𝑖𝑖𝑖𝑖 

𝑞𝑞𝑖𝑖𝑖𝑖−1 = (
𝑞𝑞𝑖𝑖𝑖𝑖∗

𝑞𝑞𝑖𝑖𝑖𝑖−1 )𝜃𝜃, 

where 0< θ <1 and  θ denotes the speed of adjustment. The equation can be rewritten as  

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 = 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑝𝑝𝑖𝑖𝑖𝑖 + 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑦𝑦𝑖𝑖𝑖𝑖 + (1 − 𝜃𝜃)𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖−1 . 

The implied long-run price elasticity is  𝛾𝛾 = 𝜃𝜃𝜃𝜃/(1 − (1 − 𝜃𝜃)) , which can be inferred 

from the AR(1) coefficient and estimated short-run price elasticity.  

In this study, the estimated short-term price elasticity is 𝛼𝛼1. The long-term elasticity will 

be inferred as 𝛼𝛼1/(1 − 𝛼𝛼4). Long-run elasticity is embeded in the consumption function 

specification. 

Consumption price elasticity is estimated by sector, including residential, commercial, 

industrial and electrical sectors as each sectors’ end user adjusts to price at different speed and to 

various extent. The regression is conducted at climate regional level to account for regional 

difference. As discussed above, lagged weather in other region is used as instrument variable for 

natural gas price. Specifically, for each region i at month t, the price instrument variable is 

constructed as following: get the heating degree days (HDD) for all other climate region 

divisions, average those HDD weighted by natural gas user population, sum the weighted 

average HDD from period t-1 to t-12. Instead of using previous one-month weather variable, 12 

preceding months’ weather is used because its impact on storage is accumulative and all months’ 

weather deviations will be captured in this way.  

The price, consumption, production, storage and weather data used in the elasticity 

estimation are all summarized in Table 2. January data represents winter season while July 
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represents summer season. Consumption estimation is based on regional level so that 

consumption for different sectors are summarized at regional level. Weather variable: HDD and 

CDD listed in Table 2 are at regional level as well. Price, production and working gas in storage 

is at national level.  

Table 2. Statistics Summary of the Major Variables used for Consumption Estimation 
  January July 
  Average Std. Dev. Average Std. Dev. 

Residential Consumption (MMcf) 98,183 71,335 12,462 8,261 
Commercial Consumption (MMcf) 53,817 40,355 14,142 9,584 

Industrial Consumption (MMcf) 73,185 70,161 61,117 66,917 
Electrical Consumption (MMcf) 63,243 60,005 101,205 93,035 

HDD 953 324 9 19 
CDD 1 2 305 136 

Henry Hub Spot Price ($/MMBtu) 3.76 1.28 3.62 0.77 
NYMEX Futures Price ($/MMBtu) 3.69 1.21 3.59 0.76 

Marketed Production (MMcf) 1,998,108 281,269 2,046,661 281,363 
Underground Working Storage (MMcf) 2,404,583 329,405 2,896,930 277,794 

 

For the electrical power sector, the price ratio of natural gas to coal is used to account for 

the substitution between coal and natural gas. Natural gas consumption for electrical section 

increased significantly in the most recent decade. Coal to gas switching is primarily driven by 

less expensive natural gas compared to coal used for power generation. The price of coal 

delivered to power sector comes from EIA as well.  

Two Stage Least Square estimation technique is used. The estimated result for 

consumption is summarized in Table 3. We mainly focus on the price elasticity and the 

coefficient of weather variables. For residential sector, the short-term consumption price 

elasticity is -0.07 in winter and consumers barely respond to price change in the summer. 

Residential consumers mainly use natural gas for cooking all year round and heating in winter. If 

price increases, consumers may reduce their usage in winter, while there is little room for usage 
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reduction in summer. Weather is the main driver for residential gas use in winter, with a 

coefficient of 0.78. In the shoulder season which includes both spring and fall seasons, the 

coefficient of HDD is 0.41. Commercial sector behaves similarly to the residential sector. The 

price elasticity is -0.04 in winter and the HDD coefficient is 0.55. Industrial and electrical sector 

show higher elasticity than residential and commercial sector, with price elasticities at -0.06 and 

-0.15 respectively for winter, and -0.11 and -0.31 for summer. Weak instrument hypothesis is 

rejected at 1% confidence level for almost all the consumption function estimation, indicating the 

instruments are not weak. Table 5 to Table 8 displays the detailed estimation for each 

consumption sector. The first stage estimations are in Appendix table A1a to table A1d.  

Table 3. Consumption Function Estimation 

 Residential Commercial 

 Winter Summer Shoulder Winter Summer Shoulder 
log(Price) -0.07** -0.00 -0.03 -0.04* -0.04** -0.02 
log(D_t-1) 0.33*** 0.52*** 0.51*** 0.33*** 0.53*** 0.50*** 

Implied long-term 
elasticity -0.10 -0.00 -0.06 -0.06 -0.09 -0.04 

HDD 0.78***  0.41*** 0.55***  0.21*** 
CDD       

Weak Instrument *** *** *** *** *** *** 
Wu-Hausman **   *   

Adjusted R-squared 0.9922 0.9878 0.9828 0.9928 0.9904 0.9825 
p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

 Industrial Electrical 

 Winter Summer Shoulder Winter Summer Shoulder 
log(Price) -0.06*** -0.11*** -0.04 -0.15* -0.31*** -0.21** 
log(D_t-1) 0.68*** 0.77*** 0.73*** 0.80*** 0.31*** 0.77*** 

Implied long-term 
elasticity -0.19 -0.49 -0.16 -0.75 -0.46 -0.92 

HDD 0.10***  0.01* 0.17**   
CDD     0.64*** 0.05** 

Weak Instrument ***  *** *** *** *** 
Wu-Hausman **    *  

Adjusted R-squared 0.9965 0.9984 0.9968 0.9795 0.976 0.9723 
p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 
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Note: 1) For residential and commercial section, the data ranges from 1997 to 2016; Industrial and electric power 
section data starts from 2006 to 2016;  
2) Some regions have 0 bcf natural gas consumption for electrical sector in some months. For those observations, 1 
bcf is used instead of 0 bcf. Result would be the same if those observations are excluded;  
3) Significant codes: *** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at the 
10 percent level. 
4) Weak instrument: Weak instrument test is an F-test in the first stage estimation. The null hypothesis is that the 
model has weak instrument. A rejection means the instrument is not weak. 
5) Wu-Hausman test: Wu-Hausman test is used to test the consistency of the OLS estimate, assuming the IV is 
consistent. The null hypothesis is that the OLS estimate is consistent. A rejection of the null hypothesis means that 
the OLS estimate is not consistent and endogeneity exist.  
 
 

Our estimation result is generally in line with the existing literature: industrial and 

electrical sector has higher price elasticity than residential and commercial sector. Consumption 

elasticity for the season with the highest consumption level is displayed in Table 4.  

Table 4. Elasticity Summary of Existing Literature 
Category Residential Commercial Industrial Electrical 

Arora (2014)  -0.24    
short-term -0.11 -0.09 -0.16 -0.15 
long-term -0.20 -0.23 -0.57 -0.47 
short-term -0.15 -0.12 -0.22 -0.12 
long-term -0.53 -0.53 -1.24 -0.80 

Davis and Muehlegger 
(2010)  -0.28 -0.21 -0.71  

Dahl and Roman  
(2004)     -0.32 

2015 NEMGas Model  -0.53 -0.53 -1.24 -0.80 
Range  (-0.53,-0.11) (-0.53,-0.09) (-1.24,-0.16) (-0.80,-0.12) 

Average  -0.29 -0.29 -0.69 -0.44 
Short-term -0.07 -0.04 -0.11 -0.31 
Long-term -0.10 -0.06 -0.49 -0.64 
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Table 5. Residential Sector Consumption Estimation Result 
Winter ( Dec. - Feb.) Summer ( May. - Sep.) Shoulder Season 

 Estimate Std. Error  Estimate Std. Error  Estimate Std. Error 
(Intercept) -5.51 10.46 (Intercept) 58.88 10.76 (Intercept) 8.91 16.67 

log(PriceWithCPI) -0.07 0.03 log(PriceWithCPI) 0.00 0.03 log(PriceWithCPI) -0.03 0.04 
log(Residential_p) 0.33 0.02 log(Residential_p) 0.52 0.02 log(Residential_p) 0.51 0.03 

log(Year) 1.11 1.39 log(Year) -7.10 1.41 log(Year) -0.78 2.2 
log(HDD_Total) 0.78 0.04 Jun. -0.16 0.02 log(HDD_Total) 0.41 0.03 

Feb. -0.08 0.01 Jul. -0.13 0.02 Apr. -0.11 0.02 
Dec. 0.04 0.01 Aug. -0.10 0.03 Oct. 0.28 0.06 

Region Dummy   Sep. 0.04 0.03 Nov. 0.35 0.03 

   Region Dummy   Region Dummy   
                        Note: The data ranged from 1997 to 2016. log(Residential_p) represents the residential consumption level of prior month in log.  
 

 

Table 6. Commercial Sector Consumption Estimation Result 
Winter ( Dec. - Feb.) Summer ( May. - Sep.)  Shoulder Season 

 Estimate Std. Error  Estimate Std. Error  Estimate Std. Error 
(Intercept) -45.64 9.05 (Intercept) -21.39 9.33 (Intercept) -48.8 14.53 

log(PriceWithCPI) -0.04 0.02 log(PriceWithCPI) -0.04 0.02 log(PriceWithCPI) -0.02 0.04 
log(Commercial_p) 0.33 0.02 log(Commercial_p) 0.53 0.02 log(Commercial_p) 0.5 0.02 

log(HDD_Total) 0.55 0.04 log(Year) 3.43 1.22 log(HDD_Total) 0.21 0.02 
log(Year) 6.53 1.21 Jun. -0.06 0.01 log(Year) 6.96 1.91 

Feb. -0.07 0.01 Jul. -0.01 0.01 Apr. -0.14 0.02 
Dec. 0.01 0.01 Aug. 0.03 0.01 Oct. 0.11 0.03 

Region Dummy   Sep. 0.08 0.01 Nov. 0.2 0.02 

   Region Dummy   Region Dummy                         Note: The data ranged from 1997 to 2016. log(Commercial_p) represents the commercial consumption level of prior month in log. 
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Table 7. Industrial Sector Consumption Estimation Result 
Winter (Nov. - Mar.) Summer ( Jun. - Aug.)  Shoulder Season 

  Estimate Std. Error   Estimate Std. Error   Estimate Std. Error 
(Intercept) 3.10 0.32 (Intercept) 2.76 3.14 (Intercept) 3.03 0.33 

log(PriceWithCPI) -0.06 0.01 log(PriceWithCPI) -0.11 0.17 log(PriceWithCPI) -0.04 0.01 
log(Industrial_p) 0.68 0.03 log(Industrial_p) 0.77 0.25 log(Industrial_p) 0.73 0.03 
log(HDD_Total) 0.10 0.02 Jul. 0.04 0.02 log(HDD_Total) 0.01 0 

Feb. -0.09 0.01 Aug. 0.05 0.02 May. 0.04 0.01 
Mar. -0.02 0.01 Region Dummy 

  
Sep. 0.06 0.01 

Nov. 0.01 0.01    Oct. 0.13 0.01 
Dec. 0.02 0.01    Region Dummy -0.19 0.02 

Region Dummy              
                      Note: The data ranged from 2006 to 2016. log(Industrial_p) represents the industrial consumption level of prior month in log. 

 

Table 8. Electrical Sector Consumption Estimation Result 
Winter ( Nov. - Mar.) Summer ( Jun. - Aug.)  Shoulder Season 

  Estimate Std. Error   Estimate Std. Error   Estimate Std. Error 
(Intercept) 0.47 0.73 (Intercept) 3.09 0.47 (Intercept) 1.51 0.45 

log(Price_ratio) -0.15 0.08 log(Price_ratio) -0.31 0.09 log(Price_ratio) -0.21 0.10 
log(Electrical_p) 0.80 0.05 log(Electrical_p) 0.31 0.07 log(Electrical_p) 0.77 0.06 
log(HDD_Total) 0.17 0.08 log(CDD_Total) 0.64 0.08 log(CDD_Total) 0.05 0.02 

Feb. -0.11 0.04 Jul. -0.06 0.05 May. -0.01 0.06 
Mar. 0.08 0.05 Aug. -0.11 0.04 Sep. -0.28 0.08 
Nov. 0.00 0.05 Region Dummy   Oct. -0.06 0.04 
Dec. 0.09 0.04    Region Dummy 

 
  

Region Dummy              
Note: The data ranged from 2006 to 2016. log(Electrical_p) represents the electrical consumption level of prior month in log. Price_ratio  denotes the price ratio 
of natural gas to coal. 
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3.2 Supply Estimation 

As discussed in chapter 2, the producer’s decision is made based on three factors: 

production cost, expected next month price and expected next year price. The specification is 

inspired by Deaton and Laroque (2003). They believe that in the short run, there is persistent 

production lag. In the long run, commodity supply is elastic and the production growth rate is 

mainly driven by “the excess of the current price over the long-run supply price.” Marginal cost 

can be used to represent long-rum supply price. In this study, production is specified as 

following:  

𝑃𝑃𝑃𝑃(𝑡𝑡,𝑚𝑚) = 𝛽𝛽0𝑃𝑃𝑃𝑃(𝑡𝑡,𝑚𝑚−1) �
𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑡𝑡) )
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) �

𝛽𝛽1

�
𝐸𝐸𝑡𝑡,𝑚𝑚(𝑝𝑝(𝑡𝑡,𝑚𝑚+1))

𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) )

�
𝛽𝛽2

𝜀𝜀𝑝𝑝𝑝𝑝 , 

or equivalently, in log form: 

𝑙𝑙𝑙𝑙 (𝑃𝑃𝑃𝑃(𝑡𝑡,𝑚𝑚)) = 𝛽𝛽0′ + 𝑙𝑙𝑙𝑙�𝑃𝑃𝑃𝑃(𝑡𝑡,𝑚𝑚−1)� + 𝛽𝛽1𝑙𝑙𝑙𝑙�
𝐸𝐸𝑡𝑡−1�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑡𝑡) �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) � + 𝛽𝛽2𝑙𝑙𝑙𝑙�
𝐸𝐸𝑡𝑡,𝑚𝑚(𝑝𝑝(𝑡𝑡,𝑚𝑚+1))

𝐸𝐸𝑡𝑡−1�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) �

� + 𝜀𝜀𝑝𝑝𝑝𝑝′ . 

Intuitively, production highly depends on prior production level and responds to the ratio of 

expected price and production cost. Term �𝐸𝐸𝑡𝑡−1�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) �/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)�  represents the investment 

incentive: if expected price next year is higher than production cost, producers tend to increase 

production capacity and thus gas supply. The last term �𝐸𝐸𝑡𝑡,𝑚𝑚(𝑝𝑝(𝑡𝑡,𝑚𝑚+1)/𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) )� indicates 

one month ahead incentive: if the expected price next month is higher than the prior expectation 

based on which investment decision is made, production tends to be higher. 𝛽𝛽1 and 𝛽𝛽2 roughly 

represents the investment and short-term price elasticity respectively. 

The estimation is conducted at national level due to data availability. NYMEX natural 

gas future price is used as producers make production decisions based on expected price instead 
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of realized price. The natural gas futures contract prices are based on Henry Hub delivery. For 

one month ahead expected price, we use front month contract, of which the delivery month is the 

calendar month following the trade date. For expected price next year, it is calculated by 

averaging prices of all twelve months’ futures maturing next year traded at the beginning of 

current year. In January 2017, the expected next year price is the average of twelve futures price 

traded in January 2017: the futures contract maturing in January, February, March and all the 

months up to December 2018.  The futures contract price is obtained from Quandl.  

The data used to estimate natural gas production ranges from 2010 to 2016. Daily 

average production volume instead of monthly total production is used to account for variance in 

day counts. Only the most recent data is utilized to better capture the post shale gas revolution 

period feature and to avoid inaccuracy resulting from structural change. The production cost 

during 2010 ~ 2016 is set at $2.56 per MMBtu. The cost level is close to specification of the 

natural gas supply curve used in Deloitte’s 2011 research paper and is adjusted to be consistent 

with observed price and production level.  

The estimation result is displayed in Table 9.   

Table 9. Production Estimation 
  Estimate Std. Error t-stats P-value 

𝛽𝛽0′ -0.002 0.003 -0.48 0.63 
𝛽𝛽1 0.014 0.005 2.53 0.01 
𝛽𝛽2 0.009 0.005 1.66 0.10 

 

3.3 Storage Cost and Convenience Yield 

In the non-arbitrage condition, the net marginal carry cost is defined as the storage cost 

net benefit of holding one unit of natural gas from period t to period (t+1). The net carry cost has 

several components. First, the inventory holders need to pay for physical storage. Physical 

storage cost is incurred for commodity storage. Secondly, there is convenience yield by holding 
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commodity at hand. Third, the spot price might fall during the inventory period. In addition, 

there is opportunity cost associated with the capital invested in storage, which can be calculated 

as the foregone interest. This component is incorporated in the discounting of expected future 

price already.  

The concept of convenience yield is proposed to explain the observation of price 

backwardation: if there is no benefit generated from stock and only physical storage cost is paid 

for holding commodity to the next period, price should increase indefinitely when there is stock.  

Kaldor (1939) and Working (1949) observed inverted inter-temporal spread for wheat market 

when inventory is held. Convenience yield is the benefit of holding one unit of commodity at 

hand which cannot be obtained by entering into futures contract. Holding inventory can help 

avoid stock out and production disruptions due to commodity unavailability. To a less extreme 

extent compared to stock out, inventory can reduce the cost of scheduling production and 

consumption. In addition, inventory can enable the holder to take advantage of a potential price 

increase.  

There are many different methods to estimate convenience yield of natural gas. Hochradl 

and Rammerstorfer (2012) use three different methods to calculate convenience yield: traditional 

net convenience yield through non-arbitrage condition, look-back option based approach (sell the 

asset at its highest price during the time period [t, T]) and geometric Asian option based 

approach (trade the asset at geometric average prices during period [t, T]). The driving factors of 

natural gas convenience yield are also intensively discussed (Kremser and  Rammerstorfer, 2010; 

Wei and Zhu, 2006; Volmer, 2011; Pindyck, 2001). The driving factors of convenience yield are 

mainly storage level, along with commodity spot prices and its variance, futures prices and its 

variance, and other factors such as weather and oil prices. 
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In this model, the net marginal carry cost incorporates both storage cost and convenience 

yield. Net carry cost is defined as storage cost minus convenience yield. As both storage cost and 

convenience yield are not easily observable, they are hard to estimate separately. This study 

instead estimates net marginal storage cost. Net marginal storage cost equals storage cost minus 

convenience yield. Net storage cost is defined as the difference between the discounted nearest 

month futures price and the current period spot price, as its definition illustrated.  

 𝑠𝑠𝑐𝑐′(𝑚𝑚) = 𝑘𝑘 − 𝑐𝑐𝑐𝑐 =
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
1 + 𝑟𝑟

− 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, (12) 

where r is the discount rate and futuresP  denotes the nearest month futures price.  

As discussed in many papers, convenience yield is driven by expectation about future 

availability. It is negatively related with storage level. When there is plenty of natural gas 

available, the inventory holder gains little from storage as there is a minimal possibility that 

stock out will happen. On the contrary, when storage goes down relatively to average storage 

levels in a month, the market expects low availability of natural gas in the future as well and 

price goes up. Convenience yield goes up along with low inventory.  

This study employs a monthly model to characterize monthly variation of natural gas 

market. This poses the difficulty of determining which level can be deemed high or low because 

natural gas inventory differs significantly among months. The idea of normal storage level is 

proposed to determine relative inventory for each month. Normal storage level will be used for 

convenience yield calculation. It denotes the normal storage level each month should reach to 

balance seasonal demand-supply relationship. If realized storage level is higher than the normal 

level, price goes down. If storage level is lower than normal level, price increases to reduce 

consumption and thus introduce more storage.  
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Normal storage level of each month is derived from the gap between production and total 

demand (including consumption demand and export) of each month, or equivalently the net 

withdrawal from storage each month.  

𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑚𝑚) =  𝑠𝑠(𝑚𝑚−1) − 𝑠𝑠(𝑚𝑚), 

We take one year as the natural gas storage cycle horizon. The expected storage level of month 

m should be able to cover all the production-demand gaps or storage withdrawal need for the rest 

of the year, that is from month (m+1) to end of the year: 

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0
(𝑚𝑚) = � 𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖)

12

𝑖𝑖=𝑚𝑚+1

= � �𝐷𝐷(𝑚𝑚) + 𝑋𝑋(𝑚𝑚) − 𝑃𝑃𝑃𝑃(𝑚𝑚−1)�
12

𝑖𝑖=𝑚𝑚+1

, 

For example, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0
(𝐽𝐽𝐽𝐽𝐽𝐽)  is the summation of the expected storage withdrawal from February to 

December, and 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0
(𝑁𝑁𝑁𝑁𝑁𝑁)  is the expected withdrawal in December.  

With the estimated net withdrawal from consumption, export and production of the year, 

we can estimate the trend of normal storage level as 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0
(𝑚𝑚) . As illustrated in Figure 9, the 

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0
(𝑚𝑚)  only captures the trend of inventory level throughout the year. As the storage level 

cannot be negative, and in fact needs to have a minimum storage (pipeline storage) to keep the 

facility functioning, we re-scale by shifting 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0
(𝑚𝑚)  up to 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

(𝑚𝑚)  and assume a constant yearly 

minimum storage level at 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. As March is always the month with lowest inventory level 

throughout a year, March inventory level is used to approximate 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The natural gas storage 

level in March varies in different years due to random weather or other shocks. The historical 

data shows that the lowest storage level of each year is close except for the years with extreme 

weather. In this study the base storage level 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is estimated by averaging the lowest working 
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gas storage level each year (occurs in March) from 2010 to 2016 and it is 1.7 tcf. The normal 

storage level is thus defined in equation (13):  

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
(𝑚𝑚) = 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0

(𝑚𝑚) + �𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0
(𝑖𝑖) ��� , 𝑖𝑖 = 1,2 … ,12. (13) 

 
Figure 9. Illustration of normal storage level 

As discussed above, the net carry cost consists of two components, the convenience yield 

and the physical storage cost. When the storage level is low compared to the normal storage 

level, the convenience yield dominates the net carry cost. The net carry cost thus drops 

significantly to increase storage level. Similarly, when the storage level is too high and close to 

reaching the storage capacity limit, the physical storage cost dominates the net carry cost. Net 

carry cost increases so that inventory level drops. A descriptive curve is used to show the general 

response of the net carry cost to the storage level. Based on the seasonal consumption and 

storage pattern, the net carry cost estimation is divided into four different stages that correspond 

to different seasons. Net marginal storage cost is defined as a function of working gas in storage, 

similar to Rui and Miranda (1995). 
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Figure 10. Descriptive illustration of net carry cost response to storage level 

Stage 1: In winter season (Dec, Jan and Feb), due to the high natural gas need resulting 

from heating purpose, consumption is always higher than the level producers can supply, so net 

withdrawal from storage is necessary. As a result, the storage level of winter is low at the end of 

winter. In this case, when the actual storage level is lower than the normal storage level, it would 

cause the market to panic. To guarantee the natural gas storage to be sufficient for future usage, 

the convenience yield will increase rapidly and dominate the net carry cost. The spot price 

therefore will increase accordingly, and consequently it will reduce the consumption and hold the 

storage for later use. In this stage, the net carry cost response is assumed to be non-linear, and the 

sensitivity will be higher as the storage level moves to the lower bound (represented by 𝑙𝑙 in the 

net storage function) from the normal storage level. To represent this behavior, we use a non-

linear function to fit the historical observations. 

𝑠𝑠𝑐𝑐′(𝑚𝑚)�𝑠𝑠(𝑚𝑚)� =
𝛽𝛽1

𝑠𝑠(𝑚𝑚) 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
(𝑚𝑚)⁄ − 𝑙𝑙

+ 𝛽𝛽2
(𝑚𝑚), (𝑚𝑚 = 𝐽𝐽𝐽𝐽𝐽𝐽,𝐹𝐹𝐹𝐹𝐹𝐹,𝐷𝐷𝐷𝐷𝐷𝐷). 
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Stage 2: In spring season (Mar, Apr and May), the peak of the consumption due to 

heating purpose has passed. The total consumption drops from high level and the gas inventory 

starts to recover. The two components of the net carry cost, convenience yield and physical 

storage cost, both respond to the storage level. When storage level is lower than the normal 

storage level, the convenience yield will be higher and the physical storage cost will be lower, 

and vice versa. The net carry cost increases with storage level. Since the consumption level is 

low in spring, the market will be less responsive to the storage level as there is still time to 

accumulate inventory. The sensitivity of the net carry cost in general is small. We simply use a 

linear function to represent the correlation in this stage. 

𝑠𝑠𝑐𝑐′(𝑚𝑚)�𝑠𝑠(𝑚𝑚)� = 𝛽𝛽1 × �𝑠𝑠(𝑚𝑚) 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
(𝑚𝑚)� � + 𝛽𝛽2

(𝑚𝑚), (𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀,𝐴𝐴𝐴𝐴𝐴𝐴,𝑀𝑀𝑀𝑀𝑀𝑀). 

Stage 3: In summer season (Jun, Jul and Aug), the condition is similar to spring: the total 

consumption is lower than the producer can produce, and the storage will keep accumulating. 

Both convenience yield and physical storage cost respond to the storage level, and the net carry 

cost positively correlates to the storage level. The consumption need become higher and forms a 

small peak in summer due to higher electricity consumption resulting from cooling need. As a 

result, the market will react relatively stronger to the storage compared to spring. In this stage, 

we also use a linear function for the net carry cost-storage correlation, but expect higher 

sensitivity. 

𝑠𝑠𝑐𝑐′(𝑚𝑚)�𝑠𝑠(𝑚𝑚)� = 𝛽𝛽1 × �𝑠𝑠(𝑚𝑚) 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
(𝑚𝑚)� �+ 𝛽𝛽2

(𝑚𝑚), (𝑚𝑚 = 𝐽𝐽𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽𝐽𝐽,𝐴𝐴𝐴𝐴𝐴𝐴). 

Stage 4: In fall season (Sep, Oct and Nov), after the storage accumulation all the way 

from spring to summer, the storage level is very high and close to reach the capacity limit. 

Moreover, the consumption in fall is generally low compared to the production level. As a result 

of the low consumption and sufficient supply, the convenience yield accounts for a limited 
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portion of the net carry cost. On the other hand, the storage level in fall is high. Most of the time 

it’s comparable to the low-cost depleted field storage capacity, and sometimes the storage level 

can even exceed the depleted field capacity, especially in October. In this case, the physical 

storage cost of natural gas will increase rapidly and dominate the total net carry cost. To account 

for this behavior, instead of using the ratio of storage to normal storage level, we use the ratio of 

storage to the depleted field capacity for net carry cost calibration. When the ratio is approaching 

or exceeding 1, the net carry cost will take off and increase accordingly. As the unit cost of the 

other storage facilities like salt cavern or aquifers are different and much higher than the depleted 

field storage, a non-linear correlation is assumed with an upper bound (represented by 𝑢𝑢 in 

function below) as the total capacity of all types of storage. 

𝑠𝑠𝑐𝑐′(𝑚𝑚)�𝑠𝑠(𝑚𝑚)� =
𝛽𝛽1

𝑠𝑠(𝑚𝑚) 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� − 𝑢𝑢
+ 𝛽𝛽2

(𝑚𝑚), (𝑚𝑚 = 𝑆𝑆𝑆𝑆𝑆𝑆,𝑂𝑂𝑂𝑂𝑂𝑂,𝑁𝑁𝑁𝑁𝑁𝑁). 

With the above four-stage division, the net carry cost function is defined as equations (1-

4), and the coefficients (𝛽𝛽’s) together with 𝑢𝑢 and 𝑙𝑙 of the functions are calibrated with historical 

observations. The actual storage level and depleted field storage capacity are observable from 

EIA database, the historical net carry cost data is calculated via equation (12) with historical 

prices and futures, and the normal storage level is determined from equations (13) with historical 

consumption and production. The calibrated functions are shown in Figure 11. 

Based on the above estimated functions, we can get the storage decision, production and 

consumptions as endogenous functions that are derivable from price. They therefore are 

functions of state variables (ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚), 𝜀𝜀𝐷𝐷
(𝑚𝑚) and 𝑇𝑇𝑇𝑇(𝑚𝑚)), by substituting the price function 

into consumption function, production function, and non-arbitrage conditions. 
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Figure 11. Net carry cost calibration results with historical observations 
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CHAPTER 4. SOLVING ALGORITHM 

 

One practical difficulty of estimating dynamic stochastic programming problems is the 

number of state variables included. This study tries to capture the major state variables while 

maintaining reasonable running time. 

4.1 Price Function Specification 

As expressed in equation (11), the current price is a function of the current weather 

condition, demand shock and total supply. Due to the complexity of the demand function, the 

explicit form of the price function is not possible to obtain in this study; therefore, a numerical 

approach is applied for approximation. The price function is approximated with a linear 

combination of independent Chebychev basis functions3 of weather conditions in each region 

(�ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚)|𝑗𝑗 = 1, … ,9�, consumption shock (𝜀𝜀𝐷𝐷
(𝑚𝑚)), and total supply (𝑇𝑇𝑇𝑇(𝑚𝑚)) of the 

month. More specifically, the price is expressed as  

 

𝑝𝑝(𝑚𝑚) = 𝑝𝑝�ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚), 𝜀𝜀𝐷𝐷
(𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚)� ≈ 𝑝̂𝑝�ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚), 𝜀𝜀𝐷𝐷

(𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚)�

= ��� � � 𝑐𝑐𝑗𝑗𝑘𝑘1𝑘𝑘3𝑘𝑘4𝜙𝜙𝑗𝑗1
(𝑘𝑘1)�ℎ𝑑𝑑𝑑𝑑𝑗𝑗

(𝑚𝑚)�𝜙𝜙3
(𝑘𝑘3)�𝜀𝜀𝐷𝐷

(𝑚𝑚)�𝜙𝜙4
(𝑘𝑘4)�𝑇𝑇𝑇𝑇(𝑚𝑚)�

𝑛𝑛4

𝑘𝑘4=1

𝑛𝑛3

𝑘𝑘3=1

𝑛𝑛1

𝑘𝑘1=1

9

𝑗𝑗=1

+ � � � 𝑐𝑐𝑗𝑗𝑘𝑘2𝑘𝑘3𝑘𝑘4𝜙𝜙𝑗𝑗2
(𝑘𝑘2)�𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚)�𝜙𝜙3
(𝑘𝑘3)�𝜀𝜀𝐷𝐷

(𝑚𝑚)�𝜙𝜙4
(𝑘𝑘4)�𝑇𝑇𝑇𝑇(𝑚𝑚)�

𝑛𝑛4

𝑘𝑘4=1

𝑛𝑛3

𝑘𝑘3=1

𝑛𝑛2

𝑘𝑘2=1

�, 

 (14) 

where   ��𝜙𝜙𝑗𝑗1
(1), … ,𝜙𝜙𝑗𝑗1

(𝑛𝑛1)�� and  ��𝜙𝜙𝑗𝑗2
(1), … ,𝜙𝜙𝑗𝑗2

(𝑛𝑛2)�� are the univariate basis functions for  ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚) 

and 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗
(𝑚𝑚) of region j; ��𝜙𝜙3

(1), … ,𝜙𝜙3
(𝑛𝑛3)�� are the basis functions for demand shock of natural 

                                                 

3 Chebychev basis function is of the following format: 𝑇𝑇0(𝑥𝑥) = 1,𝑇𝑇1(𝑥𝑥) = 𝑥𝑥,𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  
Essentially, they are polynomials. 
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gas; and ��𝜙𝜙4
(1), … ,𝜙𝜙4

(𝑛𝑛3)��  are the basis functions for the total supply of natural gas. 𝑛𝑛1, 𝑛𝑛2, 𝑛𝑛3 

and 𝑛𝑛4 are number of Chebychev basis function, for hdd, cdd, 𝜀𝜀𝐷𝐷  and TS respectively. 

Chebychev nodes are applied in this study to solve the price function. As a result, the coefficients 

of equation (14), c’s, is a vector of 𝑁𝑁 = 9 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) × (𝑛𝑛1𝑛𝑛3𝑛𝑛4 + 𝑛𝑛2𝑛𝑛3𝑛𝑛4) elements. The 

coefficients will be solved to satisfy the competitive storage model defined above at each of the 

nodes. 

Based on the above estimated price functions, we can solve the storage decision, 

production and consumption as endogenous functions that are derivable from price. They 

therefore are functions of the state variables (ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚), 𝜀𝜀𝐷𝐷
(𝑚𝑚) and 𝑇𝑇𝑇𝑇(𝑚𝑚)), by substituting 

the price function into the demand function, production function, and non-arbitrage condition. 

4.2 Gaussian Quadrature for Integration 

Substitute the net marginal storage cost function into the non-arbitrage conditions, we 

have 

 
1

1 + 𝑟𝑟
𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)� = 𝑝𝑝(𝑚𝑚) + 𝑠𝑠𝑐𝑐′�𝑠𝑠(𝑚𝑚)�.  

(15) 

With substitution of the price function, the uncertainty of the expected price comes from the 

unknown weather conditions (ℎ𝑑𝑑𝑑𝑑(𝑚𝑚+1) and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚+1)) at regional level, demand shock and 

production shock.  

𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)� = 𝐸𝐸𝑚𝑚 �𝑝̂𝑝(𝑚𝑚+1)�ℎ𝑑𝑑𝑑𝑑(𝑚𝑚+1), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚+1), 𝜀𝜀𝐷𝐷
(𝑚𝑚+1),𝑇𝑇𝑇𝑇(𝑚𝑚+1)��

= 𝐸𝐸𝑚𝑚 �𝑝̂𝑝(𝑚𝑚+1)�ℎ𝑑𝑑𝑑𝑑(𝑚𝑚+1), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚+1), 𝜀𝜀𝐷𝐷
(𝑚𝑚+1),𝑇𝑇𝑇𝑇(𝑚𝑚)𝜀𝜀𝑃𝑃𝑃𝑃

(𝑚𝑚) + 𝑠𝑠(𝑚𝑚)��

= 𝐸𝐸𝑚𝑚 �𝑝̂𝑝(𝑚𝑚+1) �ℎ𝑑𝑑𝑑𝑑(𝑚𝑚+1), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚+1), 𝜀𝜀𝐷𝐷
(𝑚𝑚+1),𝑇𝑇𝑇𝑇(𝑚𝑚) �𝑃𝑃𝑃𝑃(𝑚𝑚−1),𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)�� 𝜀𝜀𝑃𝑃𝑃𝑃

(𝑚𝑚) + 𝑠𝑠(𝑚𝑚)��, 

 

(16) 
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As the total production 𝑇𝑇𝑇𝑇(𝑚𝑚), is a function of the expected price, equation (16) can be expressed 

as an equation of expected price, storage level (𝑠𝑠(𝑚𝑚)) and state variables. Thus, the expected 

price can be solved as a function of state variables and storage level.  

The equilibrium condition can be re-written as below by substitution of price function 

and consumption function. 

 𝑇𝑇𝑇𝑇(𝑚𝑚) = 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚) + 𝑠𝑠(𝑚𝑚) = ��𝐷𝐷𝑖𝑖𝑖𝑖�𝐷𝐷(𝑚𝑚−1),𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚)�

9

𝑗𝑗=1

4

𝑖𝑖=1

𝜀𝜀𝐷𝐷
(𝑚𝑚) + 𝑠𝑠(𝑚𝑚), 

 

(17) 

With the equations 15-17, the equation set is closed and ready to be solved for price function and 

storage level with the method described later. 

To get the expected price, we need to integrate price over weather, demand shock and 

production shock distributions. Weather distribution varies among regions and more importantly 

correlates with one region to another. It is difficult to come up with a parametric distribution 

fitting regional level weather while maintaining the spatial correlations. To be consistent with 

reality and maintain the spatial correlations, empirical distribution of regional level weather is 

used in this study, which is observed from historical data of the past 28 years (1989 – 2016).   

Both consumption and production shock are random variables following Gaussian 

distributions with mean µ = 1 and their standard deviation specified to be consistent with 

historical observation. Consumption shock 𝜀𝜀𝐷𝐷
(𝑚𝑚) is calculated from the ratio of historical 

consumption to the consumption level predicted using estimated consumption function. 

Production shock 𝜀𝜀𝑃𝑃𝑃𝑃
(𝑚𝑚) is calculated in the same way. The standard deviation of both 

consumption and production shock is computed from the historical estimated number and used to 

define their distribution. The Gaussian quadrature is applied to calculate the expectation as 

weighted average over Gaussian nodes, and in this study, 25 = 5×5 mesh grids of Gaussian nodes 
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are used for consumption shock and production shock. Therefore, the expected price can be 

calculated as the integration over a total number of 700 = 28×25 grids of historical weather 

realizations, consumption shock and production shock: 

 

𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1))� = 𝐸𝐸𝑚𝑚 �𝑝𝑝�(𝑚𝑚+1) �ℎ𝑑𝑑𝑑𝑑(𝑚𝑚+1), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚+1), 𝜀𝜀𝐷𝐷
(𝑚𝑚+1),𝑃𝑃𝑃𝑃(𝑚𝑚) �𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)�� 𝜀𝜀𝑃𝑃𝑃𝑃

(𝑚𝑚) + 𝑠𝑠(𝑚𝑚)��

=
1
𝑛𝑛
��𝑝𝑝�(𝑚𝑚+1) �ℎ𝑑𝑑𝑑𝑑𝑖𝑖

(𝑚𝑚+1), 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
(𝑚𝑚+1), 𝜀𝜀𝐷𝐷

(𝑚𝑚+1),𝑃𝑃𝑃𝑃 �𝑃𝑃𝑃𝑃(𝑚𝑚−1),𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)�� 𝜀𝜀𝑃𝑃𝑃𝑃
(𝑚𝑚) + 𝑠𝑠(𝑚𝑚)� 𝑑𝑑𝜀𝜀𝐷𝐷𝑑𝑑𝜀𝜀𝑃𝑃𝑃𝑃

𝑛𝑛

𝑖𝑖=1

=
1
𝑛𝑛
� � 𝑤𝑤𝑗𝑗𝑗𝑗𝑝𝑝�

(𝑚𝑚+1) �ℎ𝑑𝑑𝑑𝑑𝑖𝑖
(𝑚𝑚+1), 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

(𝑚𝑚+1), 𝜀𝜀𝐷𝐷,𝑗𝑗
(𝑚𝑚+1),𝑃𝑃𝑃𝑃 �𝑃𝑃𝑃𝑃(𝑚𝑚−1),𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)�� 𝜀𝜀𝑃𝑃𝑃𝑃,𝑘𝑘

(𝑚𝑚) + 𝑠𝑠(𝑚𝑚)�
5

𝑗𝑗,𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

. 

 (18) 

The weather variables (HDD and CDD) for current month and next month are assumed to 

be independent at regional level. That is, current month weather conditions provide no 

information regarding what the next month weather will be. The independency assumption is 

supported by historical data. Table 10 lists the regional level monthly weather dependency, using 

HDD number. Using CDD yields the same result as the both of them are derived from 

temperature. A2M1 represents HDD of climate region 2 in January. Taking representative winter 

month – January for example, the AR(1) coefficient for HDD ranged from 0.2 to 0.3, small in 

general. Out of the total nine climate regions, only one region has AR(1) coefficient significant 

at 5% level in January. The HDDs of other winter seasons like February, March, October, 

November and December yield similar results. For all nine climate regions in six winter months, 

only 8 out of 54 have AR(1) coefficient significant at 5% level. The assumption of time 

independence of weather variables may not hold strictly but making the assumption greatly 

facilitates solving the problem. 
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Table 10. HDD Monthly Dependency Check 

 A1M1 A1M2 A1M3 A1M4 A1M5 A1M6 A1M7 A1M8 A1M9 A1M10 A1M11 A1M12 
AR(1) 0.28 0.23 0.01 0.31 -0.02 0.01 0.91 -0.40 0.48 0.13 0.47 0.03 

P-value 0.12 0.21 0.92 0.07 0.63 0.79 0.19 0.67 0.13 0.72 0.08 0.88 

 A2M1 A2M2 A2M3 A2M4 A2M5 A2M6 A2M7 A2M8 A2M9 A2M10 A2M11 A2M12 
AR(1) 0.29 0.38 0.19 0.32 -0.07 0.14 1.22 -0.58 0.34 0.19 0.48 0.12 

P-value 0.12 0.03 0.07 0.07 0.29 0.10 0.00 0.27 0.17 0.59 0.04 0.53 

 A3M1 A3M2 A3M3 A3M4 A3M5 A3M6 A3M7 A3M8 A3M9 A3M10 A3M11 A3M12 
AR(1) 0.33 0.51 0.09 0.27 -0.05 0.04 0.42 1.55 0.15 -0.26 0.71 0.08 

P-value 0.04 0.00 0.34 0.23 0.31 0.34 0.20 0.18 0.68 0.34 0.03 0.69 

 A4M1 A4M2 A4M3 A4M4 A4M5 A4M6 A4M7 A4M8 A4M9 A4M10 A4M11 A4M12 
AR(1) 0.24 0.29 0.52 0.50 0.49 0.12 0.43 0.38 -0.18 -0.49 -0.13 0.30 

P-value 0.26 0.07 0.01 0.01 0.00 0.10 0.01 0.26 0.49 0.07 0.50 0.16 

 A5M1 A5M2 A5M3 A5M4 A5M5 A5M6 A5M7 A5M8 A5M9 A5M10 A5M11 A5M12 
AR(1) 0.32 0.21 0.07 0.06 -0.03 -0.02 0.37 -5.09 0.29 0.31 0.17 -0.04 

P-value 0.11 0.22 0.47 0.35 0.03 0.32 0.44 0.50 0.69 0.50 0.45 0.82 

 A6M1 A6M2 A6M3 A6M4 A6M5 A6M6 A6M7 A6M8 A6M9 A6M10 A6M11 A6M12 
AR(1) 0.18 0.18 0.00 0.16 0.07 0.01 0.01 5.32 1.72 -0.01 0.38 0.09 

P-value 0.25 0.43 0.98 0.17 0.08 0.55 0.96 0.35 0.01 0.98 0.25 0.55 

 A7M1 A7M2 A7M3 A7M4 A7M5 A7M6 A7M7 A7M8 A7M9 A7M10 A7M11 A7M12 
AR(1) 0.28 0.03 0.11 0.33 0.11 0.06 0.92 0.38 0.76 0.12 0.05 0.14 

P-value 0.11 0.84 0.55 0.02 0.35 0.11 0.00 0.64 0.02 0.70 0.77 0.55 

 A8M1 A8M2 A8M3 A8M4 A8M5 A8M6 A8M7 A8M8 A8M9 A8M10 A8M11 A8M12 
AR(1) 0.36 -0.03 0.38 0.34 0.18 0.02 0.03 -0.20 2.13 0.45 0.25 0.36 

P-value 0.06 0.88 0.01 0.04 0.00 0.13 0.89 0.88 0.00 0.18 0.10 0.12 

 A9M1 A9M2 A9M3 A9M4 A9M5 A9M6 A9M7 A9M8 A9M9 A9M10 A9M11 A9M12 
AR(1) 0.18 0.15 0.23 0.24 -0.04 0.13 0.78 0.30 0.08 -0.08 0.10 0.20 

P-value 0.41 0.38 0.03 0.09 0.69 0.19 0.00 0.57 0.83 0.81 0.62 0.32 
Note: A2M3 represent climate region 2, March. AR(1) denotes the AR(1) coefficient. P-value is the p-value for 
AR(1) coefficient.  

 

4.3 Equation Sets and Iteration Method 

As discussed above, equations 15 – 18 need to be solved to determine the price function 

and the functions that depend on price with the Gaussian quadrature method for integration 

approximation. 
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1

1 + 𝑟𝑟
𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)� = 𝑝𝑝(𝑚𝑚) + 𝑠𝑠𝑠𝑠′(𝑠𝑠(𝑚𝑚))  

(19a) 

 

𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1))�

=
1
𝑛𝑛
� � 𝑤𝑤𝑗𝑗𝑗𝑗𝑝𝑝�

(𝑚𝑚+1)�ℎ𝑑𝑑𝑑𝑑𝑖𝑖
(𝑚𝑚+1), 𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖

(𝑚𝑚+1), 𝜀𝜀𝐷𝐷,𝑗𝑗
(𝑚𝑚+1),𝑃𝑃𝑃𝑃�𝑃𝑃𝑃𝑃(𝑚𝑚−1),𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)�,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑡𝑡) , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)�𝜀𝜀𝑃𝑃𝑃𝑃,𝑘𝑘
(𝑚𝑚) + 𝑠𝑠(𝑚𝑚)�

5

𝑗𝑗,𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 
(19b) 

 𝑇𝑇𝑇𝑇(𝑚𝑚) = ��𝐷𝐷𝑖𝑖𝑖𝑖𝑚𝑚�𝐷𝐷(𝑚𝑚−1),𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚)�
9

𝑗𝑗=1

4

𝑖𝑖=1

𝜀𝜀𝐷𝐷
(𝑚𝑚) + 𝑠𝑠(𝑚𝑚). (19c) 

From above equation set, when the regional consumption functions (𝐷𝐷𝑖𝑖𝑖𝑖), the total 

production function (𝑃𝑃𝑃𝑃), and the net marginal storage cost function (𝑠𝑠𝑠𝑠′) format are estimated, 

and the production cost (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)), the prior consumption (𝐷𝐷(𝑚𝑚−1)) and prior production 

(𝑃𝑃𝑃𝑃(𝑚𝑚−1)) are known, the equations (19a-c) will be functions only of price (𝑝𝑝(𝑚𝑚)), expected price 

𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)� and storage level (𝑠𝑠(𝑚𝑚)), besides the state variables (ℎ𝑑𝑑𝑑𝑑(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚), 𝜀𝜀𝐷𝐷
(𝑚𝑚) and 

𝑇𝑇𝑇𝑇(𝑚𝑚)). As a result, when the coefficients of the estimated price function are given or 

determined, the equations are solvable.  

As the demand functions vary across months, the price functions of each month are not 

constant across months. In fact, the price function varies across years for the same month as well 

because of different prior consumption and production levels. That is, the price function for 

January 2010 and January 2011 are different. When solving equations (19a-c), although the 

format of the equations is the same year over year resulting from our specification, the 

parameters of the equations will be different when the prior values (𝐷𝐷(𝑚𝑚−1) and 𝑃𝑃𝑃𝑃(𝑚𝑚−1)) or 

weather distributions are different. Therefore, the coefficients (c’s) of the price function will be 

different for various years and months if 𝐷𝐷(𝑚𝑚−1) and 𝑃𝑃𝑃𝑃(𝑚𝑚−1) are different. Since the weather 
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distribution is different for each month throughout the year, the price function is solved on a 

yearly basis when solving for multiple years. Based on this, to determine the coefficients of each 

month and each year, a numerical approach with iteration method is applied.  

As discussed above, when a multi-year simulation is required, the price function will be 

solved year by year, i.e. every 12-month period is solved together using iteration algorithm and 

backward induction method.  

Before the iteration begins, an initial guess of the yearly price mean (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,0
(𝑡𝑡) ) and the 

coefficients of price functions for 12 month (𝑐𝑐0
(1) − 𝑐𝑐0

(12)) are estimated. The iteration then 

begins by solving the coefficients of the first month 𝑐𝑐1
(1) (for example January), with the known 

prior values 𝐷𝐷(𝑚𝑚−1) and 𝑃𝑃𝑃𝑃(𝑚𝑚−1) from the previous December and the initial guess of February 

coefficients 𝑐𝑐0
(2). Chebyshev polynomials and nodes are applied to update the January 

coefficients with the iteration method described below. 

Once the first month coefficient 𝑐𝑐1
(1) is updated, it is used to estimate the expected 

January consumption and production, 𝐷𝐷(1) and 𝑃𝑃𝑃𝑃(1), by substituting the average ℎ𝑑𝑑𝑑𝑑(1) and 

𝑐𝑐𝑐𝑐𝑐𝑐(1) into consumption and production functions4. These two estimations will be applied as the 

prior values for February, and 𝑐𝑐1
(2) is updated with the initial guess of March coefficients 𝑐𝑐0

(3). 

This procedure is repeated for the remaining ten months with prior value estimation and 

coefficients update. At the end of the 12-month iteration, the December coefficients 𝑐𝑐1
(12) is 

updated with 𝑐𝑐0
(1). 5 

                                                 

4The expected consumption and production of current month are used as the prior values of next month, without 
consumption or production shock.  
5 𝑐𝑐1

(12)should be updated with the coefficient 𝑐𝑐0
(1) of next January. In this study the coefficients of January in 

adjacent years are assumed to be the same when solving for a given year’s coefficients. 
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Once the 12-month coefficients (𝑐𝑐1
(1)-𝑐𝑐1

(12)) are updated, the monthly estimated price and 

consumption can be calculated via the price function and consumption function with the mean 

HDD, CDD, therefore the updated yearly price mean (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,1
(𝑡𝑡) ) is calculated as the consumption 

weighted average of monthly price: 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) =  

∑ 𝐷𝐷(𝑚𝑚)�𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑚𝑚) , 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚) �𝑝𝑝(𝑚𝑚)�ℎ𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑚𝑚) , 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚) �12
𝑚𝑚=1

∑ 𝐷𝐷(𝑚𝑚)�𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑚𝑚) , 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚) �12
𝑚𝑚=1

. 

 The updated 12-month coefficients (𝑐𝑐1
(1)-𝑐𝑐1

(12)) and yearly price mean (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,1
(𝑡𝑡) ) are 

compared with the prior guess 𝑐𝑐0
(1)-𝑐𝑐0

(12) and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,0
(𝑡𝑡)  to the predetermined convergence level. If 

the difference is below the convergence level, the new coefficients are part of the solution and 

iteration stops for this year. Otherwise, the iteration continues to update the coefficients to 

replace the older guess until the convergence level is met. 

When the iteration of the first year (all 12 months) is completed, the price function 

coefficients are determined, and the price, consumption, production, and storage level of each 

month can be estimated. Therefore, the prior values of the second year can be taken from the 

December values of the first year, and the iteration method discussed above is repeated for the 

second year until convergence and then the second year coefficients are determined. Repeat this 

procedure with the rest of years, and the price functions of all years are determined. 

Iteration Method for Coefficient Update 

Step 1: Define Chebychev polynomials and nodes 

In this study, 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛3 = 𝑛𝑛4 = 3 independent Chebychev polynomials of each state 

variable (ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚), 𝜀𝜀𝐷𝐷
(𝑚𝑚) and 𝑇𝑇𝑇𝑇(𝑚𝑚)) are used approximate the price function. Thus, as 
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discussed in equation (18), a total number of 𝑁𝑁 = 9(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) × (𝑛𝑛1𝑛𝑛3𝑛𝑛4 + 𝑛𝑛2𝑛𝑛3𝑛𝑛4) = 486 

independent Chebychev polynomials will be constructed as  

 �𝜙𝜙𝑗𝑗1
(𝑘𝑘1)𝜙𝜙3

(𝑘𝑘3)𝜙𝜙4
(𝑘𝑘4),𝜙𝜙𝑗𝑗2

(𝑘𝑘2)𝜙𝜙3
(𝑘𝑘3)𝜙𝜙4

(𝑘𝑘4)�, 𝑗𝑗 = 1, … ,9; 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3,𝑘𝑘4 = 1, … ,3.  (20) 

Construct the Chebychev nodes for each state variable (ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚), 𝜀𝜀𝐷𝐷
(𝑚𝑚) and 𝑇𝑇𝑇𝑇(𝑚𝑚)) 

of the given month m and each region (𝑗𝑗 = 1, … ,9) respectively. The nodes are selected over the 

domains, �ℎ𝑑𝑑𝑑𝑑𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚
(𝑚𝑚) ,ℎ𝑑𝑑𝑑𝑑𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚) �, �𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚
(𝑚𝑚) , 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚) �, �𝜀𝜀𝐷𝐷,𝑚𝑚𝑚𝑚𝑚𝑚
(𝑚𝑚) , 𝜀𝜀𝐷𝐷,𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚) � and �𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
(𝑚𝑚) ,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

(𝑚𝑚) �, which 

are defined based on the historical data of the month of each region. According to the Chebychev 

polynomial structure above, 3 Chebychev nodes of 𝜀𝜀𝐷𝐷
(𝑚𝑚) and 𝑇𝑇𝑇𝑇(𝑚𝑚)  respectively, and 54 nodes 

of �ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚)�
𝑗𝑗=1,…,9

 are selected, thus a grid of 𝑁𝑁 = 486 interpolation nodes are 

constructed by Cartesian product of weather condition nodes and total supply nodes as 

 ��ℎ𝑑𝑑𝑑𝑑1,𝑘𝑘1
(𝑚𝑚) , … ,ℎ𝑑𝑑𝑑𝑑9,𝑘𝑘1

(𝑚𝑚) , 𝑐𝑐𝑐𝑐𝑐𝑐1,𝑘𝑘1
(𝑚𝑚) , … , 𝑐𝑐𝑐𝑐𝑐𝑐9,𝑘𝑘1

(𝑚𝑚) , 𝜀𝜀𝐷𝐷,𝑘𝑘2
(𝑚𝑚) ,𝑇𝑇𝑇𝑇𝑘𝑘3

(𝑚𝑚)�|𝑘𝑘1 = 1, … ,54; 𝑘𝑘2,𝑘𝑘3 = 1,2,3�.  (21) 

Since the Chebychev polynomials are all defined on the domain of [−1,1], the state 

variable nodes need to be normalized as 

 𝑧𝑧𝑘𝑘 =
2𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
, 𝑥𝑥𝑘𝑘 ∈ �ℎ𝑑𝑑𝑑𝑑𝑗𝑗

(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗
(𝑚𝑚), 𝜀𝜀𝐷𝐷

(𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚)�
𝑗𝑗=1,…,9

.  (22) 

Step 2: Solve equation set with given coefficients of month (m+1) 

Start with an initial guess of coefficients with month (m+1), 𝑐𝑐0
(𝑚𝑚+1), substitute 

Chebychev polynomials into the price function, and apply 𝑐𝑐0
(𝑚𝑚+1), we would have 

 𝑝̂𝑝(𝑚𝑚+1) = ��� � � 𝑐𝑐𝑗𝑗𝑘𝑘1𝑘𝑘3𝑘𝑘4
(𝑚𝑚+1) 𝜙𝜙𝑗𝑗1

(𝑘𝑘1)𝜙𝜙3
(𝑘𝑘3)𝜙𝜙4

(𝑘𝑘4)
𝑛𝑛4

𝑘𝑘4=1

𝑛𝑛3

𝑘𝑘3=1

𝑛𝑛1

𝑘𝑘1=1

+ � � � 𝑐𝑐𝑗𝑗𝑘𝑘2𝑘𝑘3𝑘𝑘4
(𝑚𝑚+1) 𝜙𝜙𝑗𝑗2

(𝑘𝑘2)𝜙𝜙3
(𝑘𝑘3)𝜙𝜙4

(𝑘𝑘4)
𝑛𝑛4

𝑘𝑘4=1

𝑛𝑛3

𝑘𝑘3=1

𝑛𝑛2

𝑘𝑘2=1

�
9

𝑗𝑗=1

,  (23) 
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Substitute equation (23) into the equation (19b), and apply the first Chebychev node 

(ℎ𝑑𝑑𝑑𝑑1,1
(𝑚𝑚), … ,ℎ𝑑𝑑𝑑𝑑9,1

(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐1,1
(𝑚𝑚), … , 𝑐𝑐𝑐𝑐𝑐𝑐9,1

(𝑚𝑚), 𝜀𝜀𝐷𝐷,1
(𝑚𝑚),𝑇𝑇𝑇𝑇1

(𝑚𝑚)). Solve equation set (19a – c) for price, 

expected price and storage level, denoted as 𝑝𝑝1
(𝑚𝑚), 𝐸𝐸1

(𝑚𝑚) and 𝑠𝑠1
(𝑚𝑚). Repeat with all remaining 

Chebychev nodes and we will get the completed set of solutions, 𝒑𝒑(𝑚𝑚) = �
𝑝𝑝1

(𝑚𝑚)

⋮
𝑝𝑝𝑁𝑁

(𝑚𝑚)
�, 𝑬𝑬(𝑚𝑚) =

�
𝐸𝐸1

(𝑚𝑚)

⋮
𝐸𝐸𝑁𝑁

(𝑚𝑚)
� and 𝒔𝒔(𝑚𝑚) = �

𝑠𝑠1
(𝑚𝑚)

⋮
𝑠𝑠𝑁𝑁

(𝑚𝑚)
�. 

Step 3: Update coefficients for month (m) 

The 𝑁𝑁 × 𝑁𝑁 operational matrix 𝛷𝛷 is defined by evaluating each of the N independent 

Chebychev polynomials at each of the N interpolation nodes.  

𝛷𝛷𝑁𝑁×𝑁𝑁

=

⎣
⎢
⎢
⎢
⎢
⎡ �𝜙𝜙11

(1)𝜙𝜙3
(1)𝜙𝜙4

(1)��
1

, … , �𝜙𝜙11
(𝑛𝑛)𝜙𝜙3

(𝑛𝑛)𝜙𝜙4
(𝑛𝑛)��

1
, �𝜙𝜙12

(1)𝜙𝜙3
(1)𝜙𝜙4

(1)��
1
, … , �𝜙𝜙12

(𝑛𝑛)𝜙𝜙3
(𝑛𝑛)𝜙𝜙4

(𝑛𝑛)��
1
, … , (𝑎𝑎𝑎𝑎𝑎𝑎 9 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), … , �𝜙𝜙91

(1)𝜙𝜙3
(1)𝜙𝜙4

(1)��
1
, … , �𝜙𝜙92

(𝑛𝑛)𝜙𝜙3
(𝑛𝑛)𝜙𝜙4

(𝑛𝑛)��
1
 

⋮                                              ⋮                                                    ⋮
(𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁 (ℎ𝑑𝑑𝑑𝑑, 𝑐𝑐𝑐𝑐𝑐𝑐, 𝜀𝜀𝐷𝐷,𝑇𝑇𝑇𝑇) 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

⋮                                              ⋮                                                    ⋮
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(1)𝜙𝜙3
(1)𝜙𝜙4

(1)��
𝑁𝑁
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(𝑛𝑛)𝜙𝜙3

(𝑛𝑛)𝜙𝜙4
(𝑛𝑛)��

𝑁𝑁
, �𝜙𝜙12

(1)𝜙𝜙3
(1)𝜙𝜙4

(1)��
𝑁𝑁

, … , �𝜙𝜙12
(𝑛𝑛)𝜙𝜙3

(𝑛𝑛)𝜙𝜙4
(𝑛𝑛)��

𝑁𝑁
, … , (𝑎𝑎𝑎𝑎𝑎𝑎 9 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), … , �𝜙𝜙91

(1)𝜙𝜙3
(1)𝜙𝜙4

(1)��
𝑁𝑁

, … , �𝜙𝜙9,2
(𝑛𝑛)𝜙𝜙3

(𝑛𝑛)𝜙𝜙4
(𝑛𝑛)��

𝑁𝑁⎦
⎥
⎥
⎥
⎥
⎤

, 

Therefore, we have the relation based on the price function that 

 𝒑𝒑(𝑚𝑚) = �
𝑝𝑝1

(𝑚𝑚)

⋮
𝑝𝑝𝑁𝑁

(𝑚𝑚)
� = 𝛷𝛷𝑁𝑁×𝑁𝑁

(𝑚𝑚) �
𝑐𝑐1,1

(𝑚𝑚)

⋮
𝑐𝑐1,𝑁𝑁

(𝑚𝑚)
� =  𝛷𝛷 × 𝑐𝑐1

(𝑚𝑚),  (24) 

The coefficients of month (m), 𝑐𝑐1
(𝑚𝑚), is updated from equation (24) as 𝑐𝑐1

(𝑚𝑚) = �𝛷𝛷𝑁𝑁×𝑁𝑁
(𝑚𝑚) �

−1
𝒑𝒑(𝑚𝑚). 
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CHAPTER 5. MODEL RESULTS AND DISCUSSION  

 

This research aims to construct a competitive storage model to explain the price behavior 

of natural gas after the shale gas boom. With the model constructed and solved, how can we 

demonstrate that the model is valid and is appropriate to be used for policy analysis? If fed with 

historical inputs including weather variable, historical weather shocks, will the model be capable 

of generating price series that are consistent with historical prices? Numerically, how accurate 

are the price and storage policy function?  The model results can be deemed as satisfactory if the 

solution passes accuracy tests with reasonable error range and can generate price series 

consistent with historical prices.  

This chapter conducts accuracy tests and back-testing to validate the model solution. The 

implications of the model results are also analyzed.  

5.1 Accuracy Tests 

The competitive storage model is solved with the algorithm discussed in Chapter 4. 

Before it is applied for future simulation, we need to verify that the solution to the model is 

accurate enough and the assumptions made to the model are valid. The solution inaccuracy is 

primarily from three sources of error: (1) the approximation error from the polynomial 

interpolation; (2) the simulation error from using mean weather variables HDD/CDD without 

shock to approximate the prior values to feed into next month function; and (3) the simulation 

error from assuming the coefficients of price function of the same month in adjacent years to be 

the same. As discussed in Chapter 4, these assumptions are made to close the function sets and to 

achieve reasonable computation time. The impact of these assumptions is investigated 

respectively for model validation purpose. 
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Approximation error of polynomial interpolation 

According to the interpolation principles (Miranda and Fackler, 2002), we choose to use 

Chebychev polynomial interpolation with Chebychev nodes in this study for the price 

approximation. With this method, the price solutions at the state variable nodes will be accurate, 

while solutions between nodes will yield an approximation error. As the number of nodes 

increase, the approximation error will be reduced.  

The approximation error is developed from the following equation: 

𝑝𝑝𝑖𝑖 =  𝑝̂𝑝𝑖𝑖 + 𝑒𝑒𝑖𝑖, (25) 

𝑝𝑝(ℎ𝑑𝑑𝑑𝑑𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖, 𝜀𝜀𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇𝑖𝑖) =  𝑒𝑒𝑖𝑖 + �𝑐𝑐𝑗𝑗𝜙𝜙𝑗𝑗(ℎ𝑑𝑑𝑑𝑑𝑖𝑖 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖, 𝜀𝜀𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇𝑖𝑖)
𝑁𝑁

𝑗𝑗=1

. (26) 

The left hand side of equation (26) is the actual price solution of the equation sets (19a-c) 

with a given set of state variables, the right hand side is the price approximation calculated with 

the approximated polynomial interpolation under the same condition, and 𝑒𝑒𝑖𝑖 is the approximation 

error of the model. In this thesis, the approximation error will be presented in a unit free form as 

the percentage error, 𝜀𝜀𝑖𝑖 = (𝑝𝑝𝑖𝑖 − 𝑝̂𝑝𝑖𝑖) 𝑝𝑝𝑖𝑖⁄ .  

The accuracy test for this model is conducted as following: Starting with the prior 

consumption and production values from December 2009, solve the model for 7 years’ horizon 

up to 2016 and observe the approximated price functions for each month of the 7 years. Generate 

state variables (ℎ𝑑𝑑𝑑𝑑𝑖𝑖 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 , 𝜀𝜀𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇𝑖𝑖) in the state space for each month, with each set of state 

variables, the price solution (𝑝𝑝𝑖𝑖) is calculated by solving the equation sets (19a-c), and the 

approximated price is calculated directly with the price function. The percentage errors (𝜀𝜀𝑖𝑖) are 

collected with all state variable sets of all month and all years.  
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100 sets of the state variables are randomly selected for each month of each year, i.e. in 

total 8400 cases over the 7-year period. Table 11 below shows both the maximum errors and 

mean errors for all the 8400 cases. To interpret the error, 𝜀𝜀𝑖𝑖 = −0.1 means that the market agent 

makes a prediction error of 1 dollar when they spend 10 dollars if the solved policy function is 

used. While 𝜀𝜀𝑖𝑖 = −0.001 means consumers will need to spend 1000 dollars to induce a 1-dollar 

mistake. 

Table 11. Accuracy Test Results with Polynomial Approximation by Month 
Month Jan Feb Mar Apr May Jun 

Max Abs. Error 4.87E-03 6.38E-03 1.98E-03 1.53E-03 1.07E-03 3.79E-04 
Mean Abs. Error 7.94E-04 1.11E-03 3.53E-04 3.69E-04 2.52E-04 1.00E-04 

Month Jul Aug Sep Oct Nov Dec 
Max Abs. Error 4.54E-04 1.02E-03 1.89E-03 5.71E-03 1.45E-03 4.17E-03 
Mean Abs. Error 9.87E-05 1.72E-04 2.91E-04 1.76E-03 2.37E-04 7.38E-04 

 

The overall average approximation error of all years and all months is 1.26e-4, which 

means that every 8000 dollars spent on natural gas consumption will lead to $1 mistake. The 

overall maximum approximation error is 6.38e-3, and this error occurred in February. Moreover, 

from Table 11, we can observe that winter months (December, January, February) and October 

are the months with higher approximation errors. Winter months have greater variances with 

HDD, and the natural gas total availability is smaller in winter due to the higher consumption 

level. These will lead to higher sensitivity in terms of price response. October has the highest 

storage level of the year and usually close to the storage capacity. The price is sensitive when the 

total availability changes. Therefore, these months would have higher percentage error when 

using second order polynomial to approximate the price solution.  

On the other hand, though we will get a maximum error of 0.64% (0.01% on average) 

from the approximation, it is far smaller than the price volatility from the historical observation 

(28%). Three nodes of each state variable (HDD, CDD, consumption shock, and total supply) are 
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used in this thesis considering the balance between the computation time and solution accuracy. 

When using three nodes of all variables, a total number of 486 meshed grids are created for 

computation. If node number per variable is increased from 3 to 4 or 5, the number of meshed 

grids will increase to 1152 or 2250 accordingly. Test simulations are conducted with 3 and 5 

nodes of each state variable for a time period of 12 months. The simulation time increased by 8 

times, but the simulation results are not impacted materially. Therefore, 3 nodes of each state 

variable is applied in this study to save the computation time at an acceptable accuracy level.  

Simulation Error from Using Mean HDD/CDD without Shock in the Model 

Because an AR(1) function is used, prior consumption and production values are required 

in the model equation sets. To solve the equation for each month, the prior values need to be 

estimated from the solution of the previous month. Natural gas consumption consists of four 

sectors of nine regions, a mesh grid of 236 cases will need to be generated even if each 

component takes only 2 nodes. This is computationally expensive to achieve. Alternatively, we 

take the expected consumption and production of current month as the prior values of next 

month, with mean HDD/CDD and no consumption shock applied. This section is to calculate the 

simulation error raised from this simplification.  

The key concern of this assumption is the error induced by using the expected mean 

consumption and production as the prior values for next month to solve the model. We conduct 

the accuracy test by introducing some random error to the consumption and production when it is 

applied as the prior value of next month to solve the model. In this manner, the final solution of 

the price function is also changed. The simulation error is then defined as the price difference 

between the price simulation with and without the consumption/production shifts. The accuracy 
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is tested with a 12-month period of the year 2016 with the consumption shock randomly selected 

from -3% to 3%. The simulation error results are summarized in Table 12. 

Table 12. Accuracy Test Results with Prior Value Assumption 
Month Jan Feb Mar Apr May Jun 

Max Abs. Error 7.25E-03 5.81E-03 6.11E-03 4.96E-03 4.35E-03 3.39E-03 
Mean Abs. Error 3.17E-03 2.65E-03 2.75E-03 2.26E-03 2.18E-03 1.45E-03 

Month Jul Aug Sep Oct Nov Dec 
Max Abs. Error 3.11E-03 4.66E-03 6.30E-03 7.60E-03 9.24E-03 6.98E-03 
Mean Abs. Error 1.62E-03 1.99E-03 3.57E-03 3.95E-03 4.25E-03 3.34E-03 

 

The overall average of the yearly inconsistency is 0.28% of all years, and the maximum 

inconsistency is 0.92% from the first year of simulation. Compared to price standard deviation 

from the historical observation (28%), the simulation error with prior value assumption is small 

and deemed acceptable. 

Simulation error from the same January price approximation in adjacent years 

The competitive storage model is solved with backward induction method. As discussed 

in Chapter 4, the coefficients of price approximation function of January (ct
(1)) are determined by 

that of February (ct
(2)), and the coefficients of December (ct

(12)) should be determined by the 

coefficients of next January (ct+1
(1) ). To close the function sets (19a-c) and make them solvable, 

we have to make estimation for ct+1
(1)  for the last month of each year (December). In this study, 

we make the assumption that the coefficients of the price approximation function is the same for 

the first month in adjacent years. The simulation error induced by this assumption is tested in this 

section. 

To conduct the accuracy test, we solve the model for a 7-year time period with the 

starting value of December 2009, that is the model for 2010 – 2016 is solved. To validate the 

assumption that the price approximation is similar in the adjacent January, we calculate the price 
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at the same randomly selected points, and compare the prices between using ct
(1) of 2010 and 

2011. The simulation error is defined as the difference between prices calculated with ct
(1) of 

2010 and 2011. The same process will be applied to each of all pairs of adjacent years, 

2010/2011, 2011/2012, till 2015/2016. The simulation errors are collected and summarized in 

Table 13. 

Table 13. Accuracy Test Results with Adjacent Years Assumption 
Comparison Years 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

Max abs. Error at Nodes 5.05E-03 1.38E-03 2.49E-03 3.92E-03 1.45E-03 2.95E-03 
Mean abs. Error at Nodes 3.51E-03 4.04E-04 1.00E-03 2.59E-03 4.91E-04 1.61E-03 
Max abs. Error at Non-

Nodes 9.65E-03 2.82E-03 4.75E-03 7.38E-03 2.41E-03 5.43E-03 

Mean abs. Error at Non-
Nodes 6.84E-03 6.20E-04 2.07E-03 5.15E-03 5.75E-04 2.97E-03 

 

The overall average of the yearly inconsistency is 0.19% of all years, and the maximum 

inconsistency is 0.97% from the first year of simulation. Compared to the price volatility of 

January (36.9%) from historical observation, the simulation error is negligible. 

5.2 Back-testing Result 

With the competitive storage model set up in Chapter 3 and solving algorithm discussed 

in Chapter 4, a test simulation is constructed with historical observations from 2010 to 2016 to 

validate the model by verifying the price average, variance, and autocorrelation.  

The back-testing is conducted in steps below: 

1. A set of monthly pricing functions for the 7 year testing horizon is solved: the test 

simulation is set starting with the prior consumption/production values from December 

2009, and the price functions are solved on a yearly basis for the following 7 years from 

2010 to 2016. The solving algorithm is described in Chapter 4. 
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2. Calculate price based on observed weather variables: after the price functions are solved 

in step 1, given the starting values (𝐷𝐷200912 , 𝑠𝑠200912 , and  𝑃𝑃𝑃𝑃200912 ), the total availability of 

January 2010 is equal to (𝑠𝑠200912 + 𝑃𝑃𝑃𝑃200912 ). The simulated 2010 January price (𝑝𝑝20101 ) is 

calculated by substituting the total availability, the actual weather conditions 

(HDD/CDD) and consumption shock of January 2010 to the solved price function.  

3. Solve for consumption and other variables following price: with the simulated price 

(𝑝𝑝20101 ), the simulated consumption (𝐷𝐷20101 ) can be calculated through the consumption 

functions for each sector and total consumption level. The simulated storage level (𝑠𝑠20101 ), 

expected price (𝐸𝐸(𝑃𝑃20102 )), and production (𝑃𝑃𝑃𝑃20101 ) are calculated sequentially.  

4. Continue with following months and years: with the simulated 2010 consumption 𝐷𝐷20101 , 

storage level 𝑠𝑠20101 , and  production 𝑃𝑃𝑃𝑃20101 , the total availability of February 2010 is 

known as 𝑠𝑠20101 + 𝑃𝑃𝑃𝑃20101 . Similar to January, the simulated price of February 𝑝𝑝20102  is 

calculated with actual weather and consumption shock from February 2010. Repeat the 

procedure until December 2016, and a series of simulated data are generated with 

historical weather and shocks. 

The historical trend of price observations is shown with the solid line in Figure 12. The 

historical price behaves as a downward trend curve with large fluctuation since 2010. The natural 

gas production in recent years has been increasing rapidly resulted from lower production cost 

due to the technology development. As a result, the natural gas price generally performs a 

downward trend as the total availability in the market increases. Besides this downward trend, 

price varies a lot among months, ranging from $1.50 to $5.80. The price peaks occur in 2010 and 

2014, while the price valleys are in 2012 and 2015. With a close examination of the historical 

weather data, we can see that the price trend is highly correlated with the weather conditions. In 
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2010 and 2014, the US experienced very cold winters and the HDDs of these years are among 

the highest in the history. On the contrary, in 2012 the US experienced the warmest winter in the 

recent decade.  

The monthly price mean shows a clear seasonal pattern that the price has two peaks 

through the year, a bigger peak in winter (January) and a smaller one in summer (July). This 

pattern is a good example that describes the correlation between price and weather. The price 

peak in winter is due to the high consumption resulting from the heating need of the cold weather 

and the summer peak is the result of the high cooling needs for the hot weather. The price 

standard deviation has a maximum value in February due to the higher consumption and lower 

storage level, and on the contrary, in October, natural gas price has lower standard deviation 

since the storage level in October is high. 

 Three different simulations are carried out in sequence as to investigate the effects of the 

weather and random shock: (1) assume weather remains stable among each year, simulation with 

mean HDD/CDD and no consumption shock; (2) simulation with actual historical HDD/CDD 

and no consumption shock; (3) simulation with actual HDD/CDD and actual consumption shock. 

The consumption shock is calculated as the ratio of historical consumption to the predicted 

consumption level using the estimated consumption function in chapter 3. 

We use these three back testing simulations to see how well the competitive storage 

model is able to simulate price series which correspond to historical prices. Moreover, we 

quantify how well the price behavior can be explained with the state variables. The simulation 

results are assessed from different aspects to check if the model solution and simulation can fit 

the historical observations well, including: (1) the goodness of fit of the simulation to the 
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historical curve; (2) the monthly statistical properties of natural gas price (mean and standard 

deviation); (3) the autocorrelation of natural gas price.  

In order to investigate how well the model generates price series, the coefficients of 

determination (R2) are calculated with each simulation series to show the goodness of fit of the 

simulation. 

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

= 1 −
∑ �𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 − 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 �

2
𝑖𝑖

∑ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 − 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��������
2

𝑖𝑖

, 

where 𝑖𝑖(= 1,2,⋯ ,84) denotes the month index during the simulation period from January 2010 

to December 2016: January 2010 is the 1st month and December 2016 is the 84th month. 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  is 

the simulated price in the ith month, 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖  is the historical price in the ith month, and 𝑝𝑝𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎������� is the 

average price of all months in the simulation period. 

The simulation results of all three series are displayed in Figure 12, and the monthly 

statistical properties are shown in Table 14 to Table 16. 

 
Figure 12. Price historical observation and back testing results 
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Note: Three simulation series display in Figure 12: simulation (1) with mean HDD/CDD and no 

consumption shock; simulation (2) with actual HDD/CDD and no consumption shock; simulation (3) with actual 

HDD/CDD and actual consumption shock. 

Table 14. Monthly Price Mean Results 

Month Historical 
Observation 

Simulation 
Case 1 

Simulation 
Case 2 

Simulation 
Case 3 

Jan 3.589 3.8628 3.7348 3.8589 
Feb 3.5487 3.7307 3.699 3.6456 
Mar 3.214 3.4572 3.3538 3.2548 
Apr 3.1924 3.4165 3.3417 3.1157 
May 3.2828 3.4481 3.3926 3.2268 
Jun 3.4616 3.5911 3.6185 3.3737 
Jul 3.4204 3.4759 3.5773 3.3393 

Aug 3.2527 3.2179 3.3837 3.188 
Sep 3.1995 3.073 3.2549 3.2123 
Oct 3.0935 3.054 3.1872 3.0574 
Nov 3.0664 3.116 3.1727 3.2873 
Dec 3.2115 3.279 3.1026 3.2186 

 

Table 15. Monthly Price Standard Deviation Results 

Month Historical 
Observation 

Simulation 
Case 1 

Simulation 
Case 2 

Simulation 
Case 3 

Jan 1.3245 0.7492 1.3003 1.3311 
Feb 1.452 0.6951 1.3883 1.5187 
Mar 1.1385 0.7027 1.292 1.3351 
Apr 1.1387 0.6948 1.1725 1.2116 
May 1.0321 0.6858 1.0493 1.172 
Jun 1.0475 0.6779 0.9171 1.0208 
Jul 0.8223 0.6879 0.8194 0.8754 

Aug 0.7059 0.6966 0.8315 0.8055 
Sep 0.5824 0.7089 0.8252 0.6917 
Oct 0.5051 0.7129 0.876 0.6032 
Nov 0.706 0.6297 0.7907 0.53 
Dec 0.7752 0.5775 0.9393 0.8181 

 

Table 16. Price Autocorrelation Results 

  
Historical 

Observation 
Simulation 

Case 1 
Simulation 

Case 2 
Simulation 

Case 3 
AR(1) 0.878 0.9398 0.9398 0.9149 
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Case 1 (Certainty of consumption):  simulation series 1 represents the effects of total 

availability of natural gas only, assuming no consumption uncertainties from weather or other 

sources.  

The green dot line in Figure 12 shows the simulation results. With no consumption 

uncertainties, the simulated price is downward sloping at a certain rate due to the production 

increase. A general seasonal pattern is maintained. The certainty case apparently cannot capture 

the extreme cases when the price dramatically increased or decreased, which may be due to high 

consumption caused by extreme weather or other consumption uncertainties. Therefore, the 

goodness of fit with Case 1 is limited and the coefficient of determination (R2) is 0.48, which can 

be interpreted as that only 48% of the historical price variation can be explained by the total 

availability alone. 

The statistical properties of the price are also off from actual values by assuming 

certainty of consumptions. The mean price shows a seasonal pattern corresponding to the 

seasonal fluctuation in consumption and storage (Table 14), while the price standard deviation is 

low and at the same level (~$0.7) through the year (Table 15). When there is no consumption 

uncertainty, the price variation comes only from the production variation, which is similar for all 

months; as a result, we observe no seasonal pattern of price standard deviation under certainty of 

consumptions.  

Case 2 (Uncertain weather conditions): in Case 2, actual historical HDD and CDD are 

involved in the simulation process. The results account for the effects of consumption 

uncertainty due to weather variation besides the total availability.  
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The blue dash-dot line in Figure 12 shows that the predicted price becomes more volatile 

with the introduction of weather variation. The simulation results generally follow the same 

pattern as the historical data, and are able to capture most of the curvature and extreme cases, 

especially the price drops in 2012 and 2016. In winter 2014, the simulated price serials also 

capture part of the increase in price due to high consumption and low availability. The goodness 

of fit is also improved with R2 = 0.67. In other words, about 67% of the price variation can be 

explained by total availability and weather variation.  

The statistical properties also get improved by including weather variation into the 

simulation. The mean price follows a seasonal pattern which is consistent with historical trend 

but is generally higher. The simulated monthly price variance gets elevated with the introduction 

of weather variation, and becomes closer to the historical observation. Price variance is still off 

from historical observation for month from August to December.  

Case 3 (Uncertain weather conditions and consumption shocks): in Case 3, both actual 

historical HDD/CDD and the consumption shock are applied to the simulation. The historical 

consumption shocks are calculated as the remainders from the calibrated consumption functions, 

which represent the uncertainties of the consumption that is not related to price and weather 

variations. The consumption shock term follows a random normal distribution with mean equals 

to 1, and is independent with weather and price. 

The red dashed line in Figure 12 shows the simulation results of Case 3. With the 

introduction of both weather variation and consumption shock, the price pattern better follows 

the historical trend, and is able to capture almost all the extreme conditions of the price increase 

(2014) and price drop (2012, 2016). The coefficient of determination increased to 0.85, which 

confirms a good fitting result with the historical observations.  
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The statistical properties with Case 3 agree with the historical observations. The price 

mean follows the same seasonal pattern with some ups and downs. The price variance also 

follows the historical trend that has a maximum variance in February and then decrease till the 

end of year. 

5.3 Marginal Effect Analysis 

As discussed above, the competitive storage model is verified via the accuracy test and 

the back testing simulations. The model is able to generate price series consistent with historical 

observations. We then can use the model solutions to investigate the marginal effects of state 

variables on price. The price response in different months to the state variables is different, and 

the price response to one variable may depend on the level of other variables, that is cross impact 

exist. In order to separate the impact of different state variables, only one state variable will vary 

at a time while the others are fixed at different levels to show the cross impact. In this section, 

the impacts are studied with one representative winter month (January) and one summer month 

(July) of 2016 to show the typical price response to the state variables. 

 

5.3.1 Weather’s impact on price level and variance 

The impact of weather on price level is shown in Figure 13 and Figure 14, which 

represent the results in January and July respectively. In each graph, the solid line, dotted lines 

and dashed lines represent the price response given different total availability levels and 

consumption shocks. The solid line is the benchmark with medium total supply and no 

consumption shock; the dashed lines are results given no consumption shock and different total 

supply level; and the dotted lines represent results given medium total supply and different 

consumption shock level. The medium total supply levels are set to be the actual total supply 
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values in January and July respectively (5.6 tcf in January, and 4.8 tcf in July). The lower and 

higher supply levels are defined as 90% and 110% of the medium supply storage of the 

corresponding month (5.0 tcf as lower supply and 6.1 tcf as high supply in January, 4.3 tcf as low 

supply and 5.3 tcf as high total supply in July). The low and high consumption shock levels are 

set to be 0.9 and 1.1 respectively for both January and July. 

Figure 13 shows the results of price level change corresponding to heating degree days in 

January. Only HDD is included as CDD is close to 0 and has no impact on natural gas 

consumption in January. In all supply and consumption shock conditions, the price level 

increases along with the HDD. This is consistent with expectation: the higher HDD leads to 

higher residential, commercial electrical and industrial consumptions for heating purpose and 

sequentially results in higher price level. In addition, a lower supply level or higher consumption 

shock will induce higher price level as expected. The correlation between price level and HDD 

for all cases is close to linear with a little convex shape. The slope of the function is increasing as 

the supply level decreases or consumption shock increase. When natural gas supply is tight, there 

is pressure to reduce consumption and accumulate natural gas so as to gradually revert inventory 

to normal level. As a result, the price will increase more when HDD increases by the same 

amount under tight supply. Similarly, when consumption shock is higher, it requires more natural 

gas consumption when HDD increase by the same amount. Therefore the price increases more 

relative to benchmark case.  
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Figure 13. Weather impact on price level in January 

Figure 14 shows the price sensitivity to cooling degree days in July (HDD is near 0 in 

July). Similar to the results in January, natural gas price increases with CDD and follows a 

pattern that is close to linear and with a little convex shape. The results are as expected that the 

price increases with the higher consumption induced by cooling purpose, mostly in electrical 

power sector. The slope of price function of CDD also increases with lower supply level and 

higher consumption shock. However, the slope change is very small and almost negligible. This 

is due to the fact that the production level is higher than the consumption level in July. Natural 

gas is plenty. As a result, the price sensitivity is lower and similar under relative tight supply 

level. 
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Figure 14. Weather impact on price level in July 

By comparing Figure 13 and Figure 14, we can see the difference of the price response to 

HDD and CDD. Apparently, with the same percentage change of degree days, the impact of 

HDD in January is greater than that of CDD in July. This is caused by several reasons. The 

consumption level in January is much higher than that in July, and the price is more sensitive due 

to the higher needs of natural gas. Moreover, the impact of HDD on consumption is greater than 

CDD, since HDD will impact on all of the four sectors of consumption (residential, commercial, 

industrial, and electrical), while CDD mainly drives the electrical power consumption sector. 

Figure 15 and Figure 16 show the weather impact on the price standard deviations of 

January and July respectively. By keeping the weather condition at a certain HDD/CDD level, 
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1000 randomly selected combinations of consumption shocks and total availability levels are 

used for price simulation. The standard deviation of these 1000 price level is calculated for the 

specific HDD/CDD level. This process is repeated with a series of HDD/CDD data, and the 

results are represented as the curve shown in Figure 15 and Figure 16.  

The price variance increases with the weather conditions in both January and July. This is 

consistent with our price level observation that the price becomes more sensitive when the 

weather condition become extreme, especially in January. The curvature of the price standard 

deviation is close to linear, which is also consistent will the conclusion of the price level. In July, 

though the price standard deviation goes upward, the magnitude change is very small (~0.03). 

This is because when the supply is sufficient and consumption is low, the price volatility will not 

change much with consumption level. This can also be confirmed from the price level results in 

Figure 14 that the price function curves are close to parallel under different conditions. 

 
Figure 15. Weather impact on price standard deviation in January 
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Figure 16. Weather impact on price standard deviation in July 

 

5.3.2 Total availability’s impact on price level and variance 

The impact of total availability on price level is shown in Figure 17 and Figure 18 for 

January and July respectively. In each graph, the solid line, dotted lines and dashed lines 

represent the price response given different levels of heating or cooling degree days and 

consumption shocks. The solid line is the benchmark with medium degree days and no 

consumption shock. The dashed lines are results given no consumption shock and different 

degree days. The dotted lines represent results given medium degree days and different 

consumption shock level. The medium degree days are set to be the actual medium HDD in 

January and CDD in July (953 heating degree days in January, and 324 cooling degree days in 

July). The lower and higher degree days are defined as 90% and 110% of the medium level of 

degree days of the corresponding month, that is 857 and 1048 HDD in January, 292 and 356 
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CDD in July. The lower and higher consumption shock levels are set to be 0.9 and 1.1 

respectively for both January and July. 

Figure 17 shows the price as a function of natural gas total supply under different weather 

and consumption shock conditions in January. The price level decreases with total supply. Under 

same supply level, higher price level is observed with higher HDD or higher consumption shock. 

The price change is material with a +/-10% change of the total supply when HDD or 

consumption shock is high. The price functions follow a convex curvature such that the slope of 

the price functions keeps falling when total supply increases. When total supply reaches a certain 

high level, natural gas price becomes less sensitive to the supply changes in the market. The 

marginal effect decreases. When total availability is low, the reduction in natural gas supply will 

introduce higher price change. A higher HDD or higher consumption shock will lead the price 

function curvature to be more convex. Both a higher HDD and a higher consumption can lead to 

higher total consumption. With higher consumption, the lack of total supply will lead to a more 

“panic” market and make the price more volatile. 
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Figure 17.  Total availability impact on price level in January 

Figure 18 shows the price response to natural gas total supply in July. Similar to what we 

observed in January, the price functions follow a downward trend pattern with a convex 

curvature. Higher price level is observed with higher CDD or higher consumption shock. As total 

supply changes, price ranges from $1 to around $6. The price sensitivity reduces when the total 

supply increases due to the same reason as in January. The curvature of the functions does not 

change much when introducing CDD or consumption shock. The curve simply moves up and 

down with different weather and shock conditions. In July, production level is higher than the 

total consumption and this makes the production sufficient. The consumption change induced by 

random shock or different weather conditions is not large enough to change the price sensitivity. 

As a result, at the same total supply level, the shift of CDD or consumption shock will only 

affect the price level but not much on the price sensitivity. 

 
Figure 18. Total availability impact on price level in July 
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By comparing the price functions in January and in July, we can observe that the price 

response to natural gas total supply is much greater in winter than that in summer. The higher 

consumption in winter makes the supply-demand relationship tight and market is more volatile. 

Price is more sensitive especially at a lower supply level. Extreme weather conditions and high 

demand shock have material impact on the price sensitivity in winter, while they have less 

impact in summer. 

Figure 19 and Figure 20 show the total availability impact on the price standard 

deviations of January and July respectively. Simulation process similar to weather impact 

investigation is applied. 1000 combinations of consumption shocks and weather conditions are 

randomly selected and the price standard deviation is calculated afterwards.  

The price standard deviation drops as the total supply increases in both January and July, 

since higher total supply leads to a more stable market. The magnitude of price standard 

deviation in January is higher than July due to the high consumption level. Moreover, the 

curvatures of the two functions are quite different that price standard deviation function shows 

obvious convex pattern in January, while the curve is close to linear in July. In January, the total 

availability has significant impact on the price variance. When there is lack of total supply, 

natural gas price varies a lot if there is weather or consumption shock. In July the total 

availability impact is weaker than in January. Lower supply level will lead to a higher price 

standard deviation, but the change is limited due to the low consumption level.  
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Figure 19. Total availability impact on price standard deviation in January 

 
Figure 20. Total availability impact on price standard deviation in July 
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CHAPTER 6. US DOMESTIC PRICE AND VOLATILITY RESPONSE TO LNG EXPORT 

 

This chapter employs the model constructed in previous sections to assess the impact of 

potential LNG export on U.S. domestic market.  

6.1 Introduction 

The rapid ramp-up of domestic natural gas production reshaped the U.S. energy sector for 

the most recent decade. Natural gas production increased significantly because of the shale gas 

boom facilitated by the technological advances of hydraulic fracking and horizontal drilling 

starting in 2005. In 2005 U.S. natural gas supply was 18,927 billion cubic feet with negligible 

gas withdrawal from shale gas wells. Supply reached 28,752 billion cubic feet in 2015 with 47% 

of the production coming from shale gas wells. Total production increased by 51.91% in 8 years. 

The increased domestic production is mostly used for increased domestic consumption and partly 

displaces natural gas imports from Canada, Trinidad and Qatar. Natural gas is increasingly used 

for electricity generation, transportation fuel, and some industry feedstock. Two of the most 

prominent changes are substitution of natural gas for coal in the power generation sector and the 

emerging opportunity of natural gas export. 

The United States is gradually transforming itself from a net natural gas importer to a 

potential top exporter. U.S. is a net natural gas importer with imports coming primarily from 

Canada and Mexico through pipelines, and some from Trinidad in the form of liquefied natural 

gas (LNG). U.S. also exports natural gas to Canada and Mexico through pipelines and to Asian 

countries such as Japan in the form of LNG. U.S. natural gas export increased dramatically in the 

beginning of the 2000’s, while imports decreased since 2005 when the shale gas production 

started to increase. As a result, net import decreased substantially since 2005 (Figure 21). 
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Although U.S. is still a net natural gas importer until 2016, with net import of 671 bcf in 2016, 

U.S. has already become a net LNG exporter of 98 bcf. Most of the LNG is exported to Japan. 

EIA (2017) predicts that U.S. will become a net gas exporter in 2017. By 2020, when all current 

U.S. liquefaction projects are expected to come online, the U.S. will comprise almost one-fifth of 

world liquefaction capacity and will become the third-largest LNG export capacity holder in the 

world, after Qatar and Australia. This thesis focuses on LNG export because currently the natural 

gas market is quite isolated due to high shipping cost, large investment and market power. LNG 

is the major format for global trade because major Asian markets cannot be reached by pipelines. 

 
Figure 21. U.S. Natural Gas Imports, Exports from 1973 to 2016 

Data Source: EIA 
 

Large volumes of LNG export is likely to be realized in the near future due to current 

large pricing spread between the U.S. and the rest of world especially Asian countries, along 

with recent policy promotion and upcoming facility completion. The U.S. natural gas market is 

quite isolated due to high shipping cost, large investment and market power. Price differs 

significantly from region to region. As shown in Figure 22, the U.S. natural gas price has fallen 
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dramatically because of increased domestic production since 2005 from $10 to about $3 recently. 

The price in Europe and Japan remains at a high level compared to the US price. European 

natural gas price averaged $4 higher than in the U.S. from 2005 to 2016. The price difference is 

even larger between US and Japan, the largest LNG importer of Asia, at $5.80 on average. 

 
Figure 22. Natural Gas Price ($/MMBtu) Comparison between U.S. and Other Regions 

Data Source: World Bank http://www.worldbank.org/en/research/commodity-markets 

Beside the economic incentive, in May 2017, the Trump administration signed trade deals 

with China and one main item is to facilitate LNG exports to China. China is one of the fastest 

growing LNG markets and is potentially a large LNG importer. China has no free trade 

agreement with U.S. and its U.S. LNG demand is suppressed. Chinese companies currently have 

no long-term contracts with U.S. natural gas suppliers. The Energy Department has authorized 

up to 19.2 bcf per day natural gas shipments to China and other interested countries under the 

trade deal. In addition to the policy incentive, the recent online LNG export terminal makes gas 

export feasible. In early 2016, Cheniere Energy’s Sabine Pass export terminal in Louisiana has 

been put into production. U.S. export capacity is expected to continue to expand rapidly in the 

following three years with several projects under construction like Cove Point, Cameron and 

http://www.worldbank.org/en/research/commodity-markets
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Freeport. The expansion of the Panama Canal in June 2017 made the shipment of LNG much 

easier and less expensive.  

The potential for large U.S. LNG exports has triggered much debate among policy 

makers and market participants. From a policy perspective, it is required that any U.S. natural 

gas export entity should apply for permission from the U.S. Department Energy (DOE). By the 

Natural Gas Act, if the natural gas is exported to a country that has free trade agreement (FTA 

nations) with the U.S., DOE must grant the permission. If the export destination is to a non-free 

trade agreement country, according to Natural Gas Act, the opposing party has the burden to 

prove that the proposed export is not in the public interest. If the party who opposes the natural 

gas export fails to prove the export is against the public interest, DOE must grant the license for 

export. There are over 20 applications being submitted to DOE for approval.  

Along with the large number of LNG export applications submitted to DOE, there are 

widely discussed concerns and questions regarding the impact of large-scale LNG export on the 

U.S. domestic market. The parties opposing export are worried that the United States natural gas 

price will increase greatly and hurt domestic consumers, as well as gas related industries. The 

impact on the environment and climate change is one of the major concern as well (Levi, 2012; 

Ratner et al, 2015). The proposing parties believes that natural gas export will create direct and 

indirect job opportunities. In addition, LNG export ensures continuous and sufficient investment 

in natural gas industry and promote related jobs. These benefits overshadow the negative impact 

from the slight price increase according to export supporters (EIA, 2014; DOE, 2015; Levi, 

2012).  

Theoretically, exporting LNG increases total gas demand and will increase natural gas 

price. The price spread will tighten between US market and the rest of the world, especially LNG 
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importing countries like Japan and China. Increased market price benefits market participants 

associated with gas production. High natural gas price stimulates investments and fosters 

ongoing natural gas production increase. On the other side, increased natural gas price is harmful 

for natural gas users. Residential and commercial gas users’ welfare will decrease. It might slow 

down the pace of power generator coal-to-gas switching. Increased price might also be 

detrimental for industrial users like fertilizer companies and other manufacturers. 

DOE initiated two studies to understand the potential impact of allowing large-scale LNG 

export to non-FTA nations: the Energy Information Administration (EIA) performs one of the 

two studies in 2014 and external entity conducts the other one released in 2015. Both studies 

conclude that LNG export is overall beneficial for U.S. economy. The gain from international 

trade overweighs the loss incurred by higher natural gas price.   

The viability and potential impact of large-scale LNG export are widely discussed in the 

current literature. Medlock (2012) utilizes an international trade analytical framework and argues 

that the impact of export will not be large because the long-term export volume is not likely to be 

large given the potential global natural gas market development. BP Energy Outlook 2017 

predicts that the U.S. LNG export will increase dramatically and becomes one the world top 

three exporters. Levi (2012) proposed to analyze LNG export impact from six dimensions: 

macroeconomic metrics like jobs and balance of trade, distributional welfare impact, national oil 

security, climate change, foreign and trade policy, and local environment. Levi finds that if there 

is appropriate environment protection policy and the U.S. is able to leverage exports to promote 

broader trade, it is very likely that the benefit of export is bigger than the costs. Deloitte (2011) 

assumes 6 bcf/day export volume. Its integrated North American Power, Coal and World Gas 

Model projects that from 2016 to 2035, the weighted average price impact is $0.12 per MMBtu. 
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Moryadee, Gabriel and Avetisyan (2014) use the World Gas Model to investigate the potential 

effects. They find the average domestic price increases by about 10.9% and the natural gas price 

of Europe and Asia decreases significantly. Bernstein, Tuladhar and Yuan (2016) analyze LNG 

export under several assumptions about U.S. natural gas resource outlook, regulation 

environment and changing geopolitical conditions, using a global natural gas market model. The 

realized export level is subject to different assumptions. They believe the market is self-

correcting and propose to leave it to the market to determine the volume and destination of LNG 

export.  

As discussed above, the impact of future LNG exports on the domestic natural gas price 

has been the topic for many economic research studies. However, there is little discussion or 

analysis about how LNG exports will impact natural gas price volatility and whether the current 

seasonal price pattern will change because of LNG exports. When there is large-scale natural gas 

export, the United States natural gas market will link more closely with the rest of the world. 

Will the market be more volatile or less volatile than now? Furthermore, how domestic natural 

gas storage will respond to the new market structure remains unanswered.  

This study aims to deepen the analysis in the current literature and get a better 

understanding about the domestic impact of US LNG export, using the monthly rational-

expectations storage model developed in previous chapters. The monthly rational-expectations 

storage model is useful for analyzing the LNG export impact mainly due to two reasons. First, 

the inclusion of storage makes the model dynamic and serially correlated. The price in each 

period is inter-temporally linked by the non-arbitrage condition and inventory. This feature 

enables us to see how domestic natural gas price and volatility evolves over time. Assuming 

LNG export, the instantaneous and long-term response of the market are different. In the short-
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term, if there is large volume of gas export, price will increase significantly. But in the long run 

production will expand and domestic gas consuming sectors will take actions to reduce the 

negative impact incurred by large LNG export and utilize other alternative energy source or 

adopt energy efficient appliance and equipment. As all those actions take time to implement, the 

magnitude of the price increase will reduce gradually. Secondly, as foreign countries’ gas 

consumption patterns throughout one year is different from the U.S., the impact of gas export for 

each month or different season might be different. The utilization of a monthly model is able to 

assess the impact on each single month.  

The rest of this chapter is organized as follows. The different kinds of potential LNG 

export patterns or contract type are explained in section 2. Section 2 also discusses briefly how to 

apply the competitive storage model to assess LNG export impact and the solving and simulation 

algorithm. Section 3 analyzes the model result. Section 4 discusses the uncertainties faced by the 

U.S. export suppliers and concludes.  

6.2 Model and Solution Algorithm 

This section describes different possible LNG export contract features and how the export 

sector can be modelled to be part of the rational-expectations competitive storage model. The 

solution and simulation algorithm are explained in this section as well.  

 

6.2.1 Contract Type: Fixed Volume or Endogenous Volume 

Most future U.S. natural gas exports will take the form of LNG as no pipeline is available 

between U.S. and other major importing countries. LNG can be shipped to different parts of the 

world in response to different regional production and demand relationship. U.S. LNG export is 

quite promising given the large pricing spread shown in Figure 22 and the fast growing natural 
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gas demand around the world, especially in Asian nations. The top two importing regions are 

Europe and Asia. Europe has domestic natural gas resources and is much less dependent on 

import compared to Asia. Given the pricing spread and growth potential, Asia is most likely to 

become the major importer of U.S. LNG. The top natural gas importers around the world are 

Japan, South Korea and China, accounting for over 50% of the global LNG trade in 2015, with 

total average of 18.2 bcf per day6. China is expected to have increasing natural gas demand due 

to more rigorous environment policies and growing LNG importing capacity. The natural gas 

demand of Japan and Korean is expected to increase as well due to the recent shift from nuclear 

to gas-fired power generations. China natural gas import increased from 0.1 tcf in 2007 to 2.2 tcf 

in 2014. Japan’s import volume increased from 3.5 tcf in 2007 to 4.7 tcf in 20147. The increasing 

trend is expected to persist.  

The U.S. market participants have started to take advantage of the attractive pricing 

spread and potential profit already. As of May 2017, there are 11 LNG export terminal projects 

approved by Federal Energy Regulatory Commission (FERC). The total export capacity is 16.44 

bcf per day. Out of the 11 terminals, 7 projects are under construction with total export capacity 

of 9.56 bcf per day8.  

Before assessing the impact of LNG export, we need to figure out what are the possible 

export scenarios and how LNG export contracts are going to be specified. As shown in Figure 

22, the United States natural gas price is divergent from Europe and Asian countries. Unlike 

global oil market, which has a global benchmark price, worldwide natural gas markets are 

isolated. The natural gas price in the U.S. is market driven, based on the total supply and 

                                                 

6 Data source: EIA (2016), https://www.eia.gov/todayinenergy/detail.php?id=27652 
7 Data source: U.S. Energy Information Administration, International Energy Statistics 
8 Data Source: FERC https://www.ferc.gov/industries/gas/indus-act/lng/lng-approved.pdf 

https://www.eia.gov/todayinenergy/detail.php?id=27652
https://www.ferc.gov/industries/gas/indus-act/lng/lng-approved.pdf
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consumption level. In Europe and Asia, the natural gas price is mainly indexed to crude oil prices 

and will not necessarily reflect the actual supply and demand relationship. The two different 

pricing mechanisms make the regional natural gas prices disconnect from each other. Figure 23 

displays the relationship between Brent Crude Oil Price and the natural gas price in Europe and 

Japan. They are highly correlated with each other. The correlation coefficient of Brent Crude Oil 

price and Europe price is 0.86 using the monthly data starting from 2000. The correlation 

coefficient of Brent Crude Oil price and Japan natural gas price is 0.87. The correlation 

coefficient between Brent Crude Oil and U.S. natural gas price is quite small, just 0.1 using the 

monthly data starting from 2000 to 2017. 

 

Figure 23. Correlation between Natural Gas Price and Brent Crude Oil Price 

Source: World Bank http://www.worldbank.org/en/research/commodity-markets 

The difference in pricing regime among regions mainly resulted from limited LNG 

liquefaction and re-gasification capacity, high transportation cost, limited transportation capacity 

along with policy regulations. To export natural gas globally, natural gas must be cooled and 

converted from a gaseous to liquid state to decrease the volume to about 1/600th of the original 

http://www.worldbank.org/en/research/commodity-markets
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volume  The shipment of LNG requires special refrigerated storage tanks and special LNG 

vessels. When LNG reaches its export destination, it is returned to its original gaseous state. The 

whole liquefaction – shipping – regasification process is expensive, with commonly estimated 

cost of ~$6 per MMBtu to ship natural gas from the United States to Asian countries (Baron, 

2014). The LNG related facilities are capital intensive. It takes around $5 to $10 billion for each 

LNG export project. 

The above features of global natural gas market shape the LNG contract. Most of the 

LNG contract are long-term contracts. Meanwhile, the global natural gas is gradually being 

transformed from being isolated to being integrated in recent years. This study designs two broad 

types of LNG export contract. One type of contract has importer purchasing a fixed predefined 

amount of natural gas from the United States, regardless of the natural gas price level. The other 

type of contact does not specify the volumes exported. The LNG export amount is dependent on 

the transportation cost and pricing spread between the United States and the importing county.  

The fixed export amount scenario is meant to be consistent with EIA’s 2014 report and 

the follow-up studies based on this report. EIA performed an assessment of LNG export impact 

on the domestic market in response to the request from the U.S. Department of Energy’s office 

of Fossil Energy (DOE/FE) in 2014. DOE/FE specified three export scenarios in its request: 12 

Bcf per day, 16 Bcf per day and 20 Bcf per day, with a phase-in rate at 2 Bcf each year. EIA 

believes that the export ramp up speed and the ultimate 12 Bcf per day scenario is extremely 

aggressive and almost impossible to realize. They are intended to show an outer envelope result 

following the approval of export licenses. Deloitte performed an impact analysis using its 

integrated North American Power, Coal, and World Gas Model in 2012. The results are based on 

6 Bcf per day LNG export.  
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Some of the potential U.S. LNG export contracts will assume fixed export amount 

regardless of price level if the LNG is used for baseload power generation or for energy security 

reason. Asian countries have limited natural gas resource and few LNG suppliers. They are eager 

to diversify their import source to secure gas supplies and gain more negotiation power via the 

source diversification. It is observed from current market that the major importers, especially 

Asian countries place high priority on security of gas supply (Ritz, 2014; Vivoda, 2014). They 

tend to sign long-term contract with predefined volumes to avoid supply shortage. Those 

importers will buy US LNG export even though it is not economically competitive compared to 

other suppliers. In addition, as shown by Alterman (2012) and Pindyck (2004), natural gas price 

is much more volatile than oil price. Securing long-term supply can reduce cash flow variability 

and is beneficial for financing.  

Although long-term natural gas contracts indexed to oil price dominate the current 

market, both Asian and European nations are gradually moving from oil-indexed contract to gas 

hub based pricing. It is foreseeable that global natural gas market is going to be more 

competitive and integrated along with development and expansion of international LNG trade. 

International Energy Agency World Energy Outlook 2011 predicts that the percentage of LNG 

indexed to Crude will decrease 82% to 63% in 2035. Therefore, we also utilize the international 

trade framework and analyze LNG export scenarios where price is endogenously determined by 

competitive markets.  

Cheniere Energy, the leading LNG export company has signed several LNG contracts to 

export U.S. domestic natural gas to Japan, Korean and India. The price of these contracts is 

indexed to Henry Hub natural gas price, with a 15% premium and a fixed fee to cover operating 

costs. The contracts do not have terms regarding binding commitment to take gas. However, the 
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buyers are required to pay the fixed fee whether they take the gas or not. According to EIA, 

about 80%9 of the LNG export volume for the projects under construction is directly indexed to 

Henry Hub price or indirectly indexed to Henry Hub via a hybrid pricing mechanism. The widely 

adopted gas hub pricing mechanism will promote the transition to trading hubs pricing globally.  

 

6.2.2 Model Framework and Solution Algorithm 

The model setup for endogenous LNG export is similar to Makki (1996).  

U.S. market clearing condition 

The previous discussed competitive storage model needs to be modified slightly to 

include the existence of LNG exports. In the U.S. market, the total availability of natural gas is 

not only consumed by domestic customers as  the residential, commercial, industrial, and 

electricity consumptions discussed before, but also as a source for export purpose. The domestic 

market clearing condition is hence changed so that export quantity is added as part of the total 

demand. 

𝑇𝑇𝑇𝑇(𝑚𝑚−1) + 𝑠𝑠(𝑚𝑚−1) = 𝑇𝑇𝑇𝑇(𝑚𝑚) = 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚) + 𝑋𝑋(𝑚𝑚) + 𝑠𝑠(𝑚𝑚), 

In the equation above, 𝑋𝑋(𝑚𝑚) denotes the total natural gas export. The other terms still have the 

same definition. Total supply (𝑇𝑇𝑇𝑇(𝑚𝑚)) comes from the production and inventory carried over 

from last month. The total consumption (𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡
(𝑚𝑚)) is the summation of the four consumption sectors 

as functions of the U.S. natural gas price. The inventory level (𝑠𝑠(𝑚𝑚)) is the leftover which is used 

to balance the monthly production-demand gap. 

                                                 

9 Source: EIA (2015) https://www.eia.gov/todayinenergy/detail.php?id=23132 

https://www.eia.gov/todayinenergy/detail.php?id=23132
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When natural gas export is introduced to the market, the demand of natural gas will 

increase. The increased demand will lead to an increase of the U.S. natural gas price and 

sequentially lead to a higher production and lower domestic consumption. The market clearing 

condition will be achieved at a new equilibrium state. 

Export determination 

In this study, both exogenous and endogenous scenarios of export are investigated. In the 

exogenous scenario, the daily export is simply a fixed amount and does not change with the US 

domestic natural gas price. The monthly export quantity is then fixed as 

𝑋𝑋(𝑚𝑚) = 𝑥𝑥 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑚𝑚), 

where 𝑥𝑥 is the fixed daily export amount and 𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠(𝑚𝑚) is the number of calendar days in month 

m.  

Under endogenous LNG export scenarios, the export quantity is determined by the US 

domestic natural gas price and the price of importing countries.  

�
𝑝𝑝(𝑚𝑚) + 𝜏𝜏 = 𝑝𝑝𝑖𝑖𝑖𝑖

(𝑚𝑚), 𝑖𝑖𝑖𝑖 𝑋𝑋(𝑚𝑚) > 0,
𝑝𝑝(𝑚𝑚) + 𝜏𝜏 > 𝑝𝑝𝑖𝑖𝑖𝑖

(𝑚𝑚), 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑋𝑋(𝑚𝑚) = 0,
 

In the equation above, 𝑝𝑝(𝑚𝑚) is the U.S. domestic natural gas price. 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚) is the price of the 

importing country and 𝜏𝜏 represents the full shipping and handling cost including all costs or 

benefits incurred by LNG trade besides the natural gas price, such as shipping, gas liquefaction 

and government export subsidy.  

The simple international trade condition describes the competition between the US and 

other exporting countries. From importing countries’ side, if the total export price from US (US 

domestic price plus shipping) is higher than the market price of the importing countries, the US 
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price will not be competitive and no trade will take place. Otherwise, export will happen and the 

price of US and the importing countries will be related by above equation. 

It is assumed that the importing country has no inventory, which reflects the reality for 

most Asian importers. As a result, the market clearing condition of the importing countries is that 

the monthly total consumption (𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚)) equals to the total imports from U.S. (𝑋𝑋(𝑚𝑚)) and import 

from other countries or domestic production (𝑋𝑋𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒
(𝑚𝑚) ). 

𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚) = 𝑋𝑋(𝑚𝑚) + 𝑋𝑋𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒

(𝑚𝑚) . 

The total consumption of the importing countries and the export from other countries are 

defined as functions of the market price of the importing countries (𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚)) with estimated 

elasticities. The consumption (𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚)) is a downward-sloping function of price and the 

export/domestic production (𝑋𝑋𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒
(𝑚𝑚) ) is an upward-sloping function of price: 

𝐷𝐷𝑖𝑖𝑖𝑖
(𝑚𝑚) = 𝐷𝐷𝑖𝑖𝑖𝑖

(𝑚𝑚)�𝑝𝑝𝑖𝑖𝑚𝑚
(𝑚𝑚)� = 𝛼𝛼𝐷𝐷

(𝑚𝑚)�𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚)�

𝛽𝛽𝐷𝐷
, 

𝑋𝑋𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒
(𝑚𝑚) = 𝑋𝑋𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒

(𝑚𝑚) �𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚)� = 𝛼𝛼𝑆𝑆

(𝑚𝑚)�𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚)�

𝛽𝛽𝑆𝑆
, 

where 𝛽𝛽𝐷𝐷 < 0 is the demand elasticity of importing countries, and 𝛽𝛽𝑆𝑆 > 0 is the supply elasticity 

of other exporting countries. Based on the international trade condition, the LNG export from the 

U.S. can be expressed as 

�
𝑋𝑋(𝑚𝑚) = 𝛼𝛼𝐷𝐷

(𝑚𝑚)�𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚)�

𝛽𝛽𝐷𝐷
− 𝛼𝛼𝑆𝑆

(𝑚𝑚)�𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚)�

𝛽𝛽𝑆𝑆
= 𝛼𝛼𝐷𝐷

(𝑚𝑚)�𝑝𝑝(𝑚𝑚) + 𝜏𝜏�
𝛽𝛽𝐷𝐷 − 𝛼𝛼𝑆𝑆

(𝑚𝑚)�𝑝𝑝(𝑚𝑚) + 𝜏𝜏�
𝛽𝛽𝑆𝑆 , 𝑖𝑖𝑖𝑖 𝑋𝑋(𝑚𝑚) > 0;

𝑋𝑋(𝑚𝑚) = 0, 𝑖𝑖𝑖𝑖 𝑝𝑝(𝑚𝑚) + 𝜏𝜏 > 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚).

 

Or equivalently, 

𝑋𝑋(𝑚𝑚) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛼𝛼𝐷𝐷
(𝑚𝑚)�𝑝𝑝(𝑚𝑚) + 𝜏𝜏�

𝛽𝛽𝐷𝐷 − 𝛼𝛼𝑆𝑆
(𝑚𝑚)�𝑝𝑝(𝑚𝑚) + 𝜏𝜏�

𝛽𝛽𝑆𝑆 , 0�. 
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Modified competitive storage model and solution algorithm 

With the modified marketing clearing condition and the export functions for exogenous 

export and endogenous export, the model is closed. The new equation set is defined as below 

with the inclusion of the export function. 

1
1 + 𝑟𝑟

𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1))� = 𝑝𝑝(𝑚𝑚) + 𝑠𝑠𝑠𝑠′(𝑠𝑠(𝑚𝑚)) 
 

27a) 

𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1))� =
1
𝑛𝑛
� � 𝑤𝑤𝑗𝑗𝑗𝑗𝑝̂𝑝𝑚𝑚+1 �

ℎ𝑑𝑑𝑑𝑑𝑖𝑖
(𝑚𝑚+1), 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

(𝑚𝑚+1), 𝜀𝜀𝐷𝐷,𝑗𝑗
(𝑚𝑚+1),

𝑃𝑃𝑃𝑃�𝑃𝑃𝑃𝑃(𝑚𝑚−1),𝐸𝐸𝑚𝑚�𝑝𝑝(𝑚𝑚+1)�,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)�𝜀𝜀𝑃𝑃𝑃𝑃,𝑘𝑘

(𝑚𝑚) + 𝑠𝑠(𝑚𝑚)
�

5

𝑗𝑗,𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 
27b) 

𝑇𝑇𝑇𝑇(𝑚𝑚) = ��𝐷𝐷𝑖𝑖𝑖𝑖𝑚𝑚�𝐷𝐷(𝑚𝑚−1),𝑝𝑝(𝑚𝑚),ℎ𝑑𝑑𝑑𝑑𝑗𝑗
(𝑚𝑚), 𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗

(𝑚𝑚)�
9

𝑗𝑗=1

4

𝑖𝑖=1

𝜀𝜀𝐷𝐷
(𝑚𝑚) + 𝑋𝑋(𝑚𝑚) + 𝑠𝑠(𝑚𝑚) 

27c) 

𝑋𝑋(𝑚𝑚) = �
𝑥𝑥 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑚𝑚),                                                                   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚 �𝛼𝛼𝐷𝐷
(𝑚𝑚)�𝑝𝑝(𝑚𝑚) + 𝜏𝜏�

𝛽𝛽𝐷𝐷 − 𝛼𝛼𝑆𝑆
(𝑚𝑚)�𝑝𝑝(𝑚𝑚) + 𝜏𝜏�

𝛽𝛽𝑆𝑆 , 0� , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
. 

27d) 

With the equation set above, the price function is solved by the numerical iteration 

method with Chebyshev polynomial approximation. The solving algorithm is the same as 

discussed in Chapter 4.3: 

1. Chebyshev polynomials and nodes of each state variable are defined with each month and 

each region. The price function is then approximated as equation (14) with the 

Chebyshev polynomial and corresponding coefficients. 

2. The initial guess of coefficients (𝑐𝑐0
(𝑚𝑚)) of the 12 months are made, with the initial guess 

the equation sets are solved at each of the state variable nodes and the solution 𝑝𝑝0
(𝑚𝑚)is 

calculated at all iteration nodes for each month. 
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3. The coefficients are updated to 𝑐𝑐1 with the calculated 𝑝𝑝0 as 𝑐𝑐1
(𝑚𝑚) = �𝛷𝛷𝑁𝑁×𝑁𝑁

(𝑚𝑚) �
−1
𝑝𝑝0

(𝑚𝑚). 

4. If the difference between 𝑐𝑐1
(𝑚𝑚) and 𝑐𝑐0

(𝑚𝑚) of all months is smaller than the predetermined 

convergence level, then 𝑐𝑐1
(𝑚𝑚) is the solution and price approximation is solved. Otherwise 

repeat steps 2 and 3 with the new coefficient guess 𝑐𝑐1
(𝑚𝑚) until the coefficients coverge. 

 

6.2.3 Scenarios and Model Parameterization 

To solve the above competitive storage model with LNG export component, we need to 

specify and calibrate the parameters first. This section describes in detail the scenarios this study 

analyzes. Model parameters are calibrated and discussed as well. We use Japan as the 

representative importing country in this study. 

As discussed above, two broad categories of LNG export scenarios are analyzed: 

exogenous export with fixed volumes and endogenous export volumes. In addition to the 

scenarios analyzed, this study analyzes the sensitivity of results to some key parameters, 

including the demand and supply elasticity of importing countries and the U.S. domestic supply 

elasticity. All the LNG export scenarios are listed in Table 17. 

For the fixed export scenarios, we need to specify the export volumes. To be comparable 

with EIA’s report and other existing literature, there are two export scenarios: 6 bcf per day and 

12 bcf per day. Both scenarios have a phase-in speed of 2 bcf each year, starting from 2017. 

For endogenous export scenarios, the following functions or parameters need to be 

calibrated and specified: 1) consumption function of the importing countries; 2) supply function 

of the importing countries. The supply includes the import from other countries and domestic 

production, excluding those imported from the U.S.; 3) shipping cost. 
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Table 17. U.S. LNG Export Scenarios 
Category Scenarios 

Scenario 1) 6 bcf/day, phase in at 2 bcf each year 
Scenario 2) 12 bcf/day, phase in at 2 bcf each year 
Scenario 3) no growth, current Asia demand and supply 
structure remains 
Scenario 4) Asia LNG demand doubled by 2035 and 
LNG supply other than US increased by 1.5 times, linear 
growth 

Asian LNG Supply 
Elasticity 

Scenario 4.1) Asian LNG supply elasticity decreases by 
50% compared to Scenario 4 

  
Scenario 4.2) Asian LNG supply elasticity increases by 
100% compared to Scenario 4 

Asian LNG Demand 
Elasticity 

Scenario 4.3) Asian LNG Demand Elasticity increases by 
100% compared to Scenario 4 

  
Scenario 4.4) Asian LNG Demand Elasticity increases by 
200% compared to Scenario 4 

U.S. Domestic 
Supply Elasticity 

Scenario 4.5) 𝛽𝛽1 decreased by 50% 
Scenario 4.6) 𝛽𝛽1 doubled 

 

Due to data availability, this study uses Japan, the largest LNG importer, as the 

representative importing country. Its consumption and supply is calibrated and scaled to 

represent the entire Asian area. The monthly consumption data is from Japan Ministry of 

Finance. Constant elasticity demand and supply function are assumed for Japan. In the base 

scenarios, the demand elasticity is set at -0.06 and the supply elasticity is set at 0.1, which is 

consistent with the NERA Economic Consulting (2014). Asian countries usually have lower 

demand elasticity than U.S. due to energy security consideration and limited alternative resource 

(Ritz, 2014). Asian countries usually put high priority on natural gas security. It means they are 

less responsive to price movement and this translate into higher willingness-to-pay or 

equivalently lower price elasticity. Given 𝛽𝛽𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑆𝑆, the 𝛼𝛼′𝑠𝑠 of the consumption and supply 

equations are calibrated to Japan’s monthly consumption data from 2009 to 2017. To maintain 

the seasonal pattern of the importing countries, the consumption and supply are fitted by month. 
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As Japan only accounts for ~50% of the entire Asian LNG import, the consumption and supply 

are scaled by multiplying 𝛼𝛼′𝑠𝑠 by 2, keeping price elasticity unchanged.  

Similar to the U.S., Japan natural gas consumption displays two peaks, one in summer for 

cooling purpose and the other one in winter for heating purpose. According to Kong (2015), over 

50% of natural gas is used for power generation in Japan. China uses most of the natural gas for 

industrial feedstock and Korea, the second largest natural gas importer use natural gas mainly for 

power generation as well. Importing regions display similar but not exactly the same pattern 

compared to the US. On average, U.S. natural gas consumption is about twice the level of 

shoulder seasons like spring and fall. However, Japan consumption is relatively stable among 

seasons. The highest month (February) consumes about 30% more natural gas than the lowest 

month (May).   

 
Figure 24. 2009-2017 Japan Monthly Average Daily Consumption (bcf) 

Shipping cost is set at $6 per thousand Cubic Feet (Mcf). It is estimated that the 

liquefaction cost is around $3 per Mcf and shipping rate is about $2 per Mcf from the United 

States to Asian countries like Japan or China. The regasification process costs about $1 per 

thousand cubic feet. In total, the cost of whole liquefaction – shipping – re-gas process is 
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commonly estimated to be ~$6 per Mcf to ship natural gas from the United States to Asian 

countries (Baron, 2014; Medlock, 2012). 

In scenario 3, we assume that Asian consumption level remains at current level. The 

import from other regions of the world like Australia remains at current level as well. This 

scenario intends to check if there is no demand growth, how much the U.S. exports and the 

impact will be.  

In scenario 4, growth is assumed for both consumption and supply. According to BP 

Energy Outlook 2017, total natural gas consumption of Asia Pacific area will increase from 

631Million tonnes oil equivalent in 2015 by about 100% to 1119 in 2035. Meanwhile, total 

production of Asia Pacific will only increase from 501 Million tonnes oil equivalent in 2015 by 

50% to 756 in 2035. This is consistent with EIA’s projection in its Internal Energy Outlook 

2013. EIA projects that global natural gas will increase from 21 tcf in 2012 to 45 tcf by 2040, 

more than doubled. Following this prediction, scenario 4 assumes 100% increase for Asia natural 

gas consumption and 50% increase for domestic production. The consumption and supply gap is 

assumed to be filled by the United States LNG export.  

We further conduct additional robustness check and sensitivity analysis by changing 

some of the key parameters, including Asia LNG supply elasticity and demand elasticity. The 

sensitivity regarding the U.S. domestic supply elasticity is analyzed as well, in scenario 4.5 and 

4.6, with increased and decreased price responsiveness respectively.  

In order to run simulations for the next 20 years up to 2036, future natural gas production 

cost and coal price is needed. This study refers to the natural gas production cost estimated by 

MIT (2010), Paltsev et al (2011) and Deloitte (2012). Future coal price for power generation 

sector is from EIA’s annual Energy Outlook baseline scenario. When the producers extract the 
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natural gas, the sources with cheaper costs is exploited first. The production cost of natural gas 

will then increase as more natural gas volume is produced over time. MIT (2010), Paltsev et al 

(2011) and Deloitte (2012) investigate the production cost evolution and find a rough linear 

correlation between the marginal production cost and the cumulative reserve additions. We use 

this estimate in our model to represent the production cost as shown in Figure 25: production 

cost increases linearly along with the cumulative production volume starting from 2016.  

 
Figure 25. Production cost change with cumulative production 

6.3 Simulation Results 

6.3.1 Simulation method 

After the competitive storage model with export component is established and the 

parameters are defined, it can be applied to predict the impact of LNG export on the US domestic 

natural gas market. The model is solved from January 2010 to December 2036 with the starting 

values of December 2009. LNG export is assumed to start from June 2017. The first 7 years of 

simulation is used to make the model stable and a total number of 20 years is simulated after 

that.  
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The impact of LNG exports on the US domestic natural gas market is estimated using  

simulations of the price difference and the structural change with and without export under 

different scenarios. The simulations are conducted as below: 

1. Starting from January 2010, a series of state variables are randomly selected for 324 

months (27 years). The regional HDDs and CDDs are randomly selected from the 

historical observations to keep the regional weather correlation. Consumption shock and 

production shock are selected as normally distributed random variables.  

2. The first set of random variables is applied to the price function of January 2010 to 

calculate the price (𝑝𝑝2010
(1) ). Other variables of the month (consumption, export, storage, 

and production) can then be determined with the calculated price. 

3. The second set of random variables is applied with the calculated prior values of January 

2010 to February 2010. Price level (𝑝𝑝2010
(2) ) is then calculated along with consumption, 

export, storage and production, etc. 

4. Move forward and continue the simulation for each month until December 2036. A full 

set of simulated price levels of 20 years is generated with randomly selected state 

variables. 

5. Repeat steps 1-4 with 999 more series of random selected state variables, and a total 

number of 1000 simulations are collected for price level and standard deviation 

investigation. 

The simulation is applied to each different export scenario including the no export 

benchmark scenario. The price change due to natural gas export is defined as the difference 

between the price levels with and without export. If the difference is above zero, it means the 

export will increase the price level, and vice versa. 
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6.3.2 LNG Export Impact  

As discussed in section 6.2.2, different types of export are applied and compared to 

investigate the impact of U.S. LNG exports. There are 4 export scenarios and 1 benchmark 

scenario: scenario (0) is the Benchmark scenario, with no export; scenario (1) is fixed exogenous 

export of 6 bcf/day; scenario (2) is fixed exogenous export of 12 bcf/day; scenario (3) is 

endogenous export with fixed demand and supply coefficients (𝛼𝛼𝐷𝐷 and 𝛼𝛼𝑆𝑆) of the importing 

countries; scenario (4) is endogenous export with increasing demand and supply coefficients (𝛼𝛼𝐷𝐷 

and 𝛼𝛼𝑆𝑆) of the importing countries. Since all 5 scenarios have no export from 2010 to 2016 and 

will have same solution with the first 7 years, we focus on the results after January 2017. Figure 

26 shows the simulated export quantity associated with all scenarios. 

 
Figure 26. Export from 2017 to 2036 under different scenarios 

Figure 26 displays the different export volumes of scenarios 1 – 4. The blue solid line and 

red dashed line are the export quantities with exogenous scenarios (1 and 2) respectively. The 

curves follow the expected pattern that the export increases with a steady step (2 bcf/day) every 
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year, until the desired capacities (6 and 12 bcf/day respectively) are reached. The orange dotted 

and purple dash-dot lines are exports under scenarios 3 and 4 when the export volume is 

endogenous. With fixed demand and supply coefficients, the importing countries will have the 

same demand level every year. Due to the increasing cost of production, the US domestic market 

price increases and accordingly will be less competitive over years compared to the other 

exporting countries. In Figure 26, we observe a downward-sloping trend for Scenario 3. In 

Scenario 4, the demand coefficient (𝛼𝛼𝐷𝐷) increases by 100% and supply coefficient (𝛼𝛼𝑆𝑆) increases 

by 50%. The increasing demand cannot be completely fulfilled by the production in the existing 

importing countries. Sequentially, the import from the US will increase over time. 

The simulated monthly price levels in the transition period and in the stable period (last 5 

years) of the different scenarios are plotted in Figure 27 and Figure 28 respectively. The price 

change percentage compared to benchmark scenario are shown in Figure 29. The long-term 

impact is represented by the results from the last year of simulation (2036), and listed in Table 18 

to Table 20. Table 18 shows the values averaged with all months in year 2036, and tables Table 

19 and Table 20 represent the values in January and July 2036 respectively to show the seasonal 

difference.  

The thick black solid line in Figure 27 and Figure 28 is the benchmark scenario where no 

export occurs. Due to the increasing production cost as time goes, the benchmark price with no 

export increases from $3 to $4.8 steadily. The other lines in Figure 27 and Figure 28 represent 

the price trend with different types of export. The prices start with the same level in 2017. When 

gradually stabilized in 2036, the price levels generally keep the seasonal pattern but are lifted by 

a certain amount. With different export scenarios, the transition periods behave differently and 

last for different length of time. 
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Figure 27. Price level in transition period (2017 – 2025) of simulation 

 

 
Figure 28. Price level in the last 5 years (2032 – 2036) of simulation 
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Figure 29. Price change between with and without export 

 

Table 18. Impact on the U.S. domestic market in 2036 – monthly average 

Export Type Price($) Price SD Storage 
 (tcf) 

Export 
(bcf) 

Domestic  
Consumption 

 (tcf) 

Production  
(tcf) 

Benchmark 4.86 0.81 2.80 0 1.79 2.05 
Scenario 1 5.01 0.85 2.80 182.5 1.78 2.21 
Scenario 2 5.12 0.89 2.81 365 1.77 2.38 
Scenario 3 4.86 0.74 2.80 14.537 1.79 2.06 
Scenario 4 5.19 0.75 2.76 334.76 1.76 2.34 

 

Table 19. Impact on the U.S. domestic market in January 2036 

Export Type Price($) Price SD Storage  
(tcf) 

Export 
(bcf) 

Domestic  
Consumption  

(tcf) 

Production  
(tcf) 

Benchmark 5.10 1.01 2.55 0 2.62 2.09 
Scenario 1 5.24 1.05 2.55 186 2.60 2.26 
Scenario 2 5.36 1.09 2.56 372 2.59 2.44 
Scenario 3 5.09 0.92 2.54 19.692 2.62 2.11 
Scenario 4 5.41 0.94 2.50 366.2 2.58 2.39 
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Table 20. Impact on the U.S. domestic market in July 2036 

 Export Type Price($) Price SD Storage 
 (tcf) 

Export 
(bcf) 

Domestic 
 Consumption  

(tcf) 

Production  
(tcf) 

Benchmark 4.91 0.70 2.88 0 1.55 2.09 
Scenario 1 5.05 0.74 2.88 186 1.53 2.26 
Scenario 2 5.17 0.78 2.89 372 1.52 2.43 
Scenario 3 4.91 0.64 2.90 14.417 1.55 2.10 
Scenario 4 5.23 0.66 2.88 332.67 1.51 2.39 

 

Scenario 1 (fixed exogenous export with 6 bcf/day): The blue solid line in Figure 29 

represents the price change with export Scenario 1 compared to no export scenario. The price 

change experiences a transitional period from 2017 to around 2025, and then moves towards the 

stabilized state. During the export phase-in period, the price increases rapidly and then it 

gradually approaches its peak level when the export reaches the 6 bcf per day in 2019. When the 

export quantity is fixed at 6 bcf/day, natural gas price begins to drop as production catches up 

with higher demand until 2025. After the transitional period, the price level climbs up gradually 

with the increase of the production cost. 

After year 2025, the US natural gas market moves towards the long-term stable state 

from the transition period. Natural gas price and volatility increase if there is export. In 2036, the 

yearly average price increases by 3% due to the LNG export ($4.86 to $5.01), and the price 

standard deviation increases from $0.81 to $0.85 (16.67% to 16.97% of price level). The same 

pattern exists for both January and July. In January, the price level increases from $5.10 to $5.24 

with price standard deviation increases from $1.01 to $1.05. In July, the price level increases 

from $4.91 to $5.05 dollars with price standard deviation increases from $0.70 to $0.74.  

The price increase results from the lagged domestic production response. If the 

production increase cannot catch up quickly enough to satisfy the LNG export, price will 

increase and domestic consumption will decrease. The production catch-up refers to the 
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difference of production level with and without export. Figure 30 shows the production change 

with the export for Scenario 1, and it describes how much and how fast production catches up 

with exports. When production stabilizes after 2025, there still exists a gap between the amount 

of production increase and the fixed export level. As the export level is a fixed quantity, the 

natural gas availability to the U.S. customers is squeezed to a lower level, and the price is more 

sensitive to shocks and experiences a higher variance. 

From 2017 to 2025, the US natural gas market experiences the transition stage due to 

LNG exports. As exports increase with a 2 bcf/day per year rate from 2017 to 2019, price 

increases also and approaches the peak level of 12% higher in 2019. After 2019, exports are 

stable while production is catching up rapidly due to higher price compared to production cost 

(Figure 30). As a result, natural gas price begins to drop, and a 6% price drop is observed in the 

first 2 years (2020 – 2021). From 2022 to 2025, the catch-up rate of production slows down, and 

the price change gradually drops to 2%, which ends the transition stage. 

 
Figure 30. Production change vs. export level in Scenario 1 
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When LNG exports are introduced, considering that the storage change is constrained by 

the facility capacity, exports are fulfilled either by increased production or the decreased 

domestic consumption or inventory. How much export is covered by each aspect is of interest 

and describes how the US domestic natural gas market is affected. Figure 31 shows the 

percentage of export absorbed by production change and consumption change. When exports are 

first introduced to the market, production cannot respond quickly enough, and more than 70% of 

exports come from reduced consumption and about 25% of exports come from the production 

increase. Inventory drawdown satisfies the remaining small portion. As the production level 

increases gradually, the percentage of export covered by production increases, and the US 

domestic consumption begins to recover. From 2017 to 2025, the percentage covered by 

production increases from 30% to more than 90%, and the US natural gas market also recovers 

to a new stable state. 

 
Figure 31. Percent of export covered by production and consumption changes in Scenario 1 
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Scenario 2 (fixed exogenous export with 12 bcf/day): The red dashed line in Figure 29 

represents the price change of Scenario 2. The price change curve has a shape similar to that of 

Scenario 1. The price change increases as exports increase from 2017 to 2022, reaching a higher 

peak as the export volume is larger. After that the price drops for the following 5 years up to 

2027. It then increases slowly again as the production cost increases. 

Similar to Scenario 1, the US natural gas market moves into a stable stage after 2027. 

With a higher fixed export level (12 bcf/day), the natural gas price level and price standard 

deviation increase to higher values. In 2036, the average price is higher by 5.3% from $4.86 to 

$5.12 and the price standard deviation increases from $0.81 to $0.89. In January the price 

increases from $5.10 to $5.36 with price standard deviation increases from $1.01 to $1.09. In 

July the price increases from $4.91 to $5.17 with price standard deviation increased from $0.70 

to $0.78. 

The production catch-up pattern of Scenario 2 is shown in Figure 32. Production 

increases catch up with exports rapidly in the beginning, and slows down after 2027. In the stable 

stage, the production increase is less than the LNG export level. As discussed in Scenario 1, this 

will lead to a reduction of natural gas supplied to domestic market and more sensitive market 

price. That is, the price level is elevated and price standard deviation also increases. 

Compared to Scenario 1, Scenario 2 has a similar pattern of transition stage while with a 

longer period (2017 – 2027). The price change climbs up from 2017 and reaches its peak value 

of 16% in 2022 when export approaches the capacity. After the export is fixed at the defined 

level, the production still increases at high speed for the following 2 years from 2023 to 2024, 

and the price change drops by rapidly in these 2 years. From 2025 to 2027, the production 

increases at a slower rate, and the price increase accordingly drops gradually to 4%.  
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Figure 32. Production change vs. export level in Scenario 2 

Similar to the changes in Scenario 1, the consumption decrease covers more than 70% of 

the export level in the beginning, and production increase only covers 25%. In the transitionary 

period, the production keeps increasing and the consumption steadily recovers as the production 

catches up with exports. In the long-term stable stage, more than 90% of export is provided by 

production, and consumption reduction only accounts for less than 10%. 

 
Figure 33. Percent of export covered by production and consumption changes in scenario 2 
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Scenario 3 (endogenous export without growth): The dotted orange line in Figure 29 

represents the price change under Scenario 3. With endogenous model assumption, the export 

level displays a clear seasonal pattern and is a function of the US market price. The price change 

increases following the export increase in 2017, and drops after that due to export reduction and 

production increase. Beginning in 2025, the price drops to the same level as when there is no 

export, and then stabilize for the rest of the simulation horizon.  

In the stable stage after 2025, the average price is similar to the benchmark scenario 

while with a smaller price standard deviation. Compared to benchmark results, the yearly 

average price of Scenario 3 is at the same level ($4.86), but the price standard deviation reduces 

from $0.81 to $0.74. The prices of different seasons behave similarly. In January, the price is 

almost the same ($5.10 in benchmark scenario while $5.09 under scenario 3) with price standard 

deviation reduced from 1.01 to 0.92 dollar. In July, the price level is also the same at $4.91 with 

price standard deviation reduces from $0.70 to $0.64. 

In Scenario 3, the Asian natural gas demand and supply coefficients are assumed to be 

constant and do not change with time. As the US market price of natural gas keeps increasing 

with production cost, the US will become less competitive and export less as time goes. Figure 

34 shows the export level and production change with time. The export level is low in Scenario 

3. Compared to the US consumption level, the export in 2018 equals to only 2.1% of US total 

consumption of the same year. As the export level is low and has a downward sloping trend, it is 

easily met by the production increase as shown in Figure 34. With the export completely covered 

by the increased production, the average US consumption and price will also recover to the level 

close to the benchmark scenario. 
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The impact on the price variance from the endogenous LNG export is also of interest. 

With the export level negatively correlated with natural gas price, the price becomes less volatile. 

The export can act as a buffering sector to the US market. When the US market experiences 

unexpected shock which tends to increase the price level, exports fall due to higher price. The 

reduced export will be consumed in the US market. In this manner, the price impact of the shock 

will be reduced.  

The transition period of Scenario 3 is from year 2017 to 2025. The price increases by 4% 

in the beginning when export is initially introduced. After that the price keeps dropping as 

exports decrease and production catches up rapidly. In 2025 the production completely catches 

up with the export level and the price change also drops to zero. 

 
Figure 34. Production change vs. export level in Scenario 3 

The production and consumption changes as a percentage of the export level are plotted 

in Figure 35. The production change begins with a low percentage of 25% and catches up to a 

complete 100% coverage of the export level. We can see that the production change after 2026 
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actually covers slightly more than 100%. This means that due to the reduction of exports the 

production increase overshoots a small amount when catching up, and this also explains why the 

price level can sometimes be lower than the benchmark scenario. 

 
Figure 35.  Percent of export covered by production and consumption changes in scenario 3 

Scenario 4 (endogenous export with growth): The purple dash-dot line in Figure 29 

represents the price change under scenario 4. Unlike Scenario 3, due to the increased Asian 

natural gas demand and supply, the export level keeps increasing from 2017 to 2036. 

Accordingly, after an initial jump, the price change increases steadily beginning in 2019. 

As the export increases steadily after the first year of introduction, the price change 

increases gradually from 2019. In 2036, compared to the benchmark scenario with no natural gas 

export, the average yearly price level increases by 6.8% from $4.86 to $5.19, and the price 

standard deviation reduces from $0.81 to $0.75. The seasonal price acts similarly. In January, the 

price increases from $5.10 to $5.41 with price standard deviation reduced from $1.01 to $0.94. In 
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July, the price increases from $4.91 to $5.23 with price standard deviation reduces from $0.70 to 

$0.66. 

Higher LNG export volumes lead to higher prices. In 2017, the export level is low and 

the price change is not significant. As a result, the production increase is not as large as in 

Scenario 1 and 2. Figure 36 shows that the production change keeps increasing but at a lower 

level compared with the export increase. In this manner, the production available to the US 

domestic market is constantly lower. The price then keeps increasing till the end of the 

simulation horizon. The price variance reduces due to the buffering effects from the endogenous 

export as discussed in Scenario 3. The price is less volatile with the negative-correlated export 

function of price. 

 
Figure 36. Production change vs. export level in Scenario 4 

As shown in Figure 37, in the beginning periods 25% of the export comes from 

production increase, and 70% comes from consumption reduction. The remaining 5% comes 
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from inventory drawdown. With the increasing export level, the production catches up at a 

slower pace. It covers less than 90% of the total LNG export until 2036. This leads to a lower 

supply level in US domestic market, and explains why Scenario 4 has the highest price increase 

in the stationary stage. 

 
Figure 37. Percent of exports covered by production and consumption changes in scenario 4 

 

6.3.3 Robustness check and Sensitivity Analysis 

For endogenous LNG export scenarios, the results might change if some of the key 

parameters are specified differently. This study conducts additional scenario simulations to check 

the robustness of the model results. In addition, scenarios using different model parameters shed 

some light on the result sensitivity to key parameters. The sensitivity of three key parameters are 

checked: importing countries’ price elasticity of LNG demand, price elasticity of LNG supply 

from regions other than the United States and the U.S. domestic production price responsiveness. 



www.manaraa.com

117 
 

 
 

The results are overall consistent with the scenarios discussed above in the long-term. The short-

term variation is relatively larger if using different parameters.  

LNG Supply Elasticity 

The price elasticity of Asian LNG supply from other regions other than the United States 

is set at 0.1. The supply elasticity may be higher or lower than this number. The robustness check 

is based on scenario 4 with growth assumption. In Scenario 4.1, the supply elasticity is decreased 

by 50% to 0.05 while the elasticity is doubled in Scenario 4.2 to 0.2. The long-term impact is 

small and consistent with scenario 4 as we can see from Table 21.  

Table 21. Robustness Check regarding Price Elasticity of LNG Supply from Other Regions 

  Scenario Price 
($) 

Price 
SD 

Stor. 
(tcf) 

Export 
(bcf) 

Domestic 
Cons.  
 (tcf) 

Prod.  
(tcf) 

Benchmark (Scenario 4) 5.41 0.94 2.50 366.20 2.58 2.389 
0.5* LNG supply elasticity 5.42 0.99 2.50 359.40 2.58 2.385 
2* LNG supply elasticity 5.39 0.86 2.49 377.01 2.58 2.396 
Benchmark (Scenario 4) 5.23 0.66 2.88 332.67 1.51 2.390 

0.5* LNG supply elasticity 5.24 0.70 2.87 328.54 1.51 2.386 
2* LNG supply elasticity 5.22 0.60 2.90 337.01 1.51 2.396 
Benchmark (Scenario 4) 5.19 0.75 2.76 334.76 1.76 2.345 

0.5* LNG supply elasticity 5.20 0.79 2.76 330.65 1.76 2.341 
2* LNG supply elasticity 5.17 0.68 2.77 339.91 1.76 2.351 

 

In the transition period, natural gas price of the U.S. increases as production is gradually 

increased to satisfy LNG export. Asian LNG price increases accordingly as its price equals the 

U.S. price plus $6 shipping cost when exports exist. Asian imports from other regions decrease 

along with the increased price but to a lesser extent due to a smaller supply elasticity. As a result, 

the export needed from the U.S. decreases and the U.S. domestic price decreases due to lower 

total demand, as illustrated in Figure 38. In the long term, as price gradually reverts back, the 

impact diminishes and the price impact is very close to 0. The same logic applies when supply 

elasticity increases. 



www.manaraa.com

118 
 

 
 

 

 
Figure 38. Export and Price Change due to Alternative LNG Supply Elasticity 

 

Demand Price Elasticity 

The current Asian natural gas demand elasticity is set at -0.06. This number may increase 

in the future as they diversify the energy sources and more alternative fuels are available. We 

consider the scenario when demand price elasticity increases. In Scenario 4.3, the demand 

elasticity increases by 100% to -0.12. The elasticity triples in Scenario 4.4 from -0.06 to -0.18. 

The long-term impact is small and consistent with scenario 4 as we can see from Table 22. When 

Asian demand elasticity increases, U.S. price standard deviation decreases. Higher demand 

elasticity means users are more responsive to price change. When price are high, import decrease 

more with higher demand elasticity. The decreased import helps reduce high price pressure and 

thus variance decreases.    

In the first several years right after U.S. LNG exports begin, exports increase compared 

to scenario 4 if demand elasticity is higher. The availability of the U.S. natural gas decreases the 

Asian price. If demand is more sensitive to price change, Asia imports will increase more due to 

the price decrease. The higher the demand elasticity, the larger the import will be. Higher import 
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pushes domestic natural gas price up. The impact fades away when price is getting close to 

starting level. 

Table 22. Robustness Check regarding Asian Demand Elasticity 

  Scenario Price 
($) 

Price 
SD 

Stor. 
(tcf) 

Export 
(bcf) 

Domestic 
Cons.  
 (tcf) 

Prod.  
(tcf) 

Benchmark (Scenario 4) 5.41 0.94 2.50 366.20 2.58 2.389 
2* Asian demand elas. 5.41 0.91 2.49 373.79 2.58 2.395 
3* Asian demand elas. 5.40 0.88 2.49 381.93 2.58 2.402 

Benchmark (Scenario 4) 5.23 0.66 2.88 332.67 1.51 2.390 
2* Asian demand elas. 5.23 0.63 2.89 338.66 1.51 2.396 
3* Asian demand elas. 5.23 0.61 2.90 345.33 1.51 2.402 

Benchmark (Scenario 4) 5.19 0.75 2.76 334.76 1.76 2.345 
2* Asian demand elas. 5.18 0.72 2.77 340.27 1.76 2.350 
3* Asian demand elas. 5.18 0.70 2.77 346.35 1.76 2.356 

 

 
Figure 39. Export and Price Change due to Alternative Asian Demand Elasticity 

 

Sensitivity to domestic production elasticity  

Both the long-term and transitionary period price impact is highly dependent on how fast 

U.S. domestic producers can increase their production capacity and meet the extra natural gas 

demand resulting from LNG export. The U.S. production function is specified as below with 
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estimated investment incentive parameter 𝛽𝛽1 at 0.014 and estimated short-term price elasticity at 

0.008.  

𝑃𝑃𝑃𝑃(𝑡𝑡,𝑚𝑚) = 𝛽𝛽0𝑃𝑃𝑃𝑃(𝑡𝑡,𝑚𝑚−1) �
𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

(𝑡𝑡) )
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) �

𝛽𝛽1

�
𝐸𝐸𝑡𝑡,𝑚𝑚(𝑝𝑝(𝑡𝑡,𝑚𝑚+1))

𝐸𝐸𝑡𝑡−1(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) )

�
𝛽𝛽2

𝜀𝜀𝑝𝑝𝑝𝑝  

If the investment incentive parameter decreases by 50% from 0.014 to 0.007, the speed of 

the production catch-up to meet LNG export will be much slower. In addition, higher price is 

needed to produce the same amount of natural gas in the long term. This will translate into higher 

natural gas prices in both the short-term and long term. Comparing to scenario 4.0 that uses the 

calibrated production function, price is $0.50 or around 10% higher by 2036. Consequently, 

exports will decrease by about 4% in the long term.  

On the other side, if the investment incentive parameter of production function doubled 

from 0.014 to 0.028, producers are more sensitive to price increase. More natural gas will be 

produced and the price decreases compared to scenario 4.0. The price decrease is more 

pronounced in the transitionary period due to tight supply during that period. The LNG export 

volume increase by above 2% in the long term.  

In terms of price variance, price have larger variance when production is less sensitive to 

price change. The price standard deviation is 0.75 in benchmark scenario 4.0. When production 

becomes more responsive to price change, price standard deviation decreased to 0.72. When 

production is less responsive to price change, price stand deviation increased to 0.81 end of 

simulation horizon, year 2036. More details can be seen in Table 23.  

 



www.manaraa.com

121 
 

 
 

 
Figure 40. Price and Export Comparison under Different Production Specification 

 

Table 23. Sensitivity to the U.S. Production Elasticity 

  Scenario Price 
($) 

Price 
SD 

Stor. 
(tcf) 

Export 
(bcf) 

Domestic 
Cons.  
 (tcf) 

Prod.  
(tcf) 

Benchmark (Scenario 4) 5.41 0.94 2.50 366.20 2.58 2.389 
0.5* US supply 

elasticity 5.94 1.00 2.50 352.84 2.52 2.320 

2* US supply elasticity 5.15 0.91 2.49 373.17 2.61 2.427 
Benchmark (Scenario 4) 5.23 0.66 2.88 332.67 1.51 2.390 

0.5* US supply 
elasticity 5.77 0.72 2.88 320.17 1.46 2.320 

2* US supply elasticity 4.98 0.63 2.88 338.93 1.54 2.428 
Benchmark (Scenario 4) 5.19 0.75 2.76 334.76 1.76 2.345 

0.5* US supply 
elasticity 5.72 0.81 2.77 322.08 1.71 2.276 

2* US supply elasticity 4.92 0.72 2.76 341.18 1.78 2.382 
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CHAPTER 7. DISCUSSION AND CONCLUSION 

 

This thesis aims to construct a model that can mimic the major market participants’ 

behavior and reproduce natural gas prices with major seasonal patterns consistent with historical 

observations. A monthly rational-expectations competitive storage model is constructed to better 

reflect monthly variations in price. The model is based on market fundamentals to facilitate 

simulations of natural gas demand shifts or changes in production technologies.  

Back-testing results from 2010 to 2016 show that the model can simulate price series that 

are reasonably close to historical observations. The model generates simulated prices that largely 

replicate the key features of historical data, including the price level, price variance, price 

sensitivity under unusual weather conditions and high price autocorrelation. Weather conditions 

and total natural gas availability are the main drivers for price and price standard deviation. The 

model finds that in winter, high heating degree days (HDD) or low inventory drives price and 

price volatility higher while price and its variance decrease with low HDD and high inventory. 

The scenario is similar in summer with cooling degree days (CDD) instead of HDD as the 

weather variable. When inventory is low, weather shocks have a larger impact on price than 

when inventory is high. The effect is more pronounced in winter than in summer because the 

supply is tighter in heating season. 

The model is solved using numerical methods because analytical solutions are not 

feasible. In order to balance accuracy and meanwhile achieve reasonable running time, natural 

gas total availability, regional weather variables and total consumption shock are included as 

state variables. To facilitate model solving, we make two assumptions: 1) using mean weather 

variables HDD/CDD without shock to approximate the prior consumption and production level 
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to feed into next month function; 2) the coefficients of the price function of January in adjacent 

years are the same. Accuracy tests show that the model’s approximation errors are reasonable. 

The model may perform better if we were able to include prior consumption and production level 

as state variables. However, “curse of dimensionality” exists and the inclusion of additional state 

variables will make the computation time prohibitively long. 

The monthly rational-expectations storage model is useful for analyzing the LNG export 

impact because the inclusion of storage makes the model dynamic and prices become serially 

correlated so that the model can capture both short-term and long run market response. In 

addition, as foreign countries’ gas consumption patterns throughout one year are different from 

the U.S., the impact of gas export for each month or different season might be different. The 

utilization of a monthly model is able to assess the impact on each single month. This study 

covers some of the very aggressive export scenarios like 12 bcf per day and U.S. LNG is used to 

fill the Asian consumption and supply growth gap. LNG export impact is assessed under 

different export contract types. The exogenous scenario assumes a fixed export volume for all 

periods and no seasonal pattern is considered. This is the case when imported U.S. natural gas is 

mostly used for baseload consumption and long-term contracts are signed. When the global 

natural gas market gradually transitions from isolated to integrated market, competitive 

international trade framework can be utilized to evaluate the LNG impact on the U.S. domestic 

market. Scenarios 3 and 4 assume the law of one price holds and export volumes are 

endogenously determined. Below are the major findings of this study.  

With high shipping cost and inelastic Asian natural gas demand, U.S. LNG is not 

competitive under current market condition if no Asian demand growth is expected. As shown in 

scenario 3, if Asia natural gas consumption and import from other regions remains at current 
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level, the U.S. LNG export volume is very small and decreases over time. Due to small export 

volumes, the domestic price impact is minimal.  

The long-term price impact is less than 8% under all scenarios analyzed in this study, or 

around $0.33 per thousand cubic feet. In 2036, the endogenous export with growth assumptions 

scenario shows the largest price increase compared to the no export benchmark scenario. The 

export level is around 12 bcf per day. The price impact is small in general due to relative small 

volume: total US domestic consumption level is 27 tcf in 2016, equal to 74 bcf per day. If the US 

is going to export 12 bcf/d, this accounts for about 16% of the US total consumption. If the 

export volume is set at 6 bcf per day, it will only account for 8% of the total U.S consumption.  

Price volatility becomes smaller if an endogenous export sector is added while the price 

volatility becomes higher under fixed export volume scenarios. If the LNG export is 

endogenously determined, when domestic price increased, LNG export decreases. This provides 

an additional price buffer if there is U.S. domestic demand shock that increases natural gas 

consumption. On the contrary, fixed volume exports makes the total natural gas consumption 

less responsive to price changes and thus increases price variance.  

Most of the LNG export volumes will be met by production increases rather than 

domestic consumption decreases in the long term. In all four scenarios analyzed in this study, 

production catches up gradually in response to a price increase due to LNG export. In the 

beginning period when production is constrained by production capacity, most of the export is 

covered by domestic consumption reduction. In the long term, as production increase, domestic 

consumption recovers to similar level as in the no export scenario.   
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Table A1a. Residential Sector Consumption Estimation - First Stage Result* 
Winter ( Dec. - Feb.) Summer ( May. - Sep.) Shoulder Season 

  Estimate Std. Error   Estimate Std. Error   Estimate Std. Error 
IV-Lagged Weather 0.01 0.00 IV-Lagged Weather 0.004 0.001 IV-Lagged Weather 0.004 0.001 
log(D_p) 0.01 0.13 log(D_p) 0.30 0.09 log(D_p) 0.36 0.09 
log (HDD) 1.01 0.14       log(HDD) 0.20 0.06 
Adj. R-squared 0.19 Adj. R-squared 0.12 Adj. R-squared 0.14 
F-Statistic 9.76 F-Statistic 9.09 F-Statistic 8.98 

 
 
 

Table A1b. Commercial Sector Consumption Estimation - First Stage Result* 
Winter ( Dec. - Feb.) Summer ( May. - Sep.) Shoulder Season 

  Estimate Std. Error   Estimate Std. Error   Estimate Std. Error 
IV-Lagged Weather 0.01 0.00 IV-Lagged Weather 0.005 0.001 IV-Lagged Weather 0.005 0.001 
log(D_p) -0.48 0.16 log(D_p) -0.05 0.10 log(D_p) 0.12 0.09 
log(HDD) 1.08 0.14       log(HDD) 0.18 0.06 
Adj. R-squared 0.20 Adj. R-squared 0.11 Adj. R-squared 0.12 
F-Statistic 10.57 F-Statistic 8.23 F-Statistic 7.79 
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Table A1c. Industrial Sector Consumption Estimation - First Stage Result* 

Winter (Nov. - Mar.) Summer ( Jun. - Aug.) Shoulder Season 
  Estimate Std. Error   Estimate Std. Error   Estimate Std. Error 
IV-Lagged Weather 0.01 0.00 IV-Lagged Weather 0.01 0.00 IV-Lagged Weather 0.01 0.00 
log(D_p) -1.19 0.18 log(D_p) -1.03 0.24 log(D_p) -0.62 0.20 
log(HDD) 0.44 0.10       log(HDD) 0.03 0.04 
Adj. R-squared 0.25 Adj. R-squared 0.22 Adj. R-squared 0.22 
F-Statistic 12.07 F-Statistic 7.78 F-Statistic 8.76 

 
 
 

Table A1d. Electrical Sector Consumption Estimation - First Stage Result* 
Winter ( Nov. - Mar.) Summer ( Jun. - Aug.) Shoulder Season 

  Estimate Std. Error   Estimate Std. Error   Estimate Std. Error 
IV-Lagged Weather 0.005 0.001 IV-Lagged Weather 0.005 0.001 IV-Lagged Weather 0.01 0.00 
log(D_p) -0.19 0.05 log(D_p) -0.20 0.06 log(D_p) -0.15 0.05 
log(HDD) 0.54 0.09 log(CDD) 0.06 0.06 log(CDD) -0.03 0.03 
Adj. R-squared 0.32 Adj. R-squared 0.21 Adj. R-squared 0.23 
F-Statistic 13.52 F-Statistic 6.07 F-Statistic 7.98 

 
 
*Note: 1) Table A1a to table A1d above report the first stage estimates for the 2SLS estimates presented in Chapter 3, table 4 to table 7; 
2) The independent variable for regression in Table A1a to table A1c is natural gas real price in log. The independent variable in Table A1d is the natural gas to 
coal price ratio in log; 
3) IV- Lagged Weather denotes the instrument variable used for consumption estimation. The Instrument Variable utilized in this study is the accumulated lagged 
weather variables in other regions; log(D_p) represents the consumption level in prior month in log; HDD and CDD are the current month heating degree days 
and cooling degree days; 
4) The second stage regression excludes instrument variable.  
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